Int J Infect Dis
September 2024
Objectives: Identifying host response biomarkers implicated in the emergence of organ failure during infection is key to improving the early detection of this complication.
Methods: Twenty biomarkers of innate immunity, T-cell response, endothelial dysfunction, coagulation, and immunosuppression were profiled in 180 surgical patients with infections of diverse severity (IDS) and 53 with no infection (nIDS). Those better differentiating IDS/nIDS in the area under the curve were combined to test their association with the sequential organ failure assessment score by linear regression analysis in IDS.
Background: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU.
View Article and Find Full Text PDFBackground: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19.
Methods: We did a prospective cohort study across 23 hospitals in Spain.
Objectives: To evaluate if the detection of N antigen of SARS-CoV-2 in plasma by a rapid lateral flow test predicts 90-day mortality in COVID-19 patients hospitalized at the wards.
Methods: The presence of N-antigenemia was evaluated in the first 36 hours after hospitalization in 600 unvaccinated COVID-19 patients, by using the Panbio COVID-19 Ag Rapid Test Device from Abbott (Abbott Laboratories Inc., Chicago, IL, USA).
Risk prediction tools cannot identify most individuals at high coronary artery disease (CAD) risk. Oxidized low-density lipoproteins (oxLDLs) and microRNAs are actively involved in atherosclerosis. Our aim was to examine the association of CAD and oxLDLs-induced microRNAs, and to assess the microRNAs predictive capacity of future CAD events.
View Article and Find Full Text PDFObjective: We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype.
View Article and Find Full Text PDFSpread of antimicrobial resistance and shortage of novel antibiotics have led to an urgent need for new antibacterials. Although aminoglycoside antibiotics (AGs) are very potent anti-infectives, their use is largely restricted due to serious side-effects, mainly nephrotoxicity and ototoxicity. We evaluated the ototoxicity of various AGs selected from a larger set of AGs on the basis of their strong antibacterial activities against multidrug-resistant clinical isolates of the ESKAPE panel: gentamicin, gentamicin C1a, apramycin, paromomycin and neomycin.
View Article and Find Full Text PDFTo compact the extracellular sides of myelin, an important transition must take place: from membrane sliding, while building the wraps, to membrane adhesion and water exclusion. Removal of the negatively charged glycocalyx becomes the limiting factor in such transition. What is required to initiate this membrane-zipping process? Knocking-out the Lipocalin Apolipoprotein D (ApoD), essential for lysosomal functional integrity in glial cells, results in a specific defect in myelin extracellular leaflet compaction in peripheral and central nervous system, which results in reduced conduction velocity and suboptimal behavioral outputs: motor learning is compromised.
View Article and Find Full Text PDFA detailed knowledge of the mechanisms underlying brain aging is fundamental to understand its functional decline and the baseline upon which brain pathologies superimpose. Endogenous protective mechanisms must contribute to the adaptability and plasticity still present in the healthy aged brain. Apolipoprotein D (ApoD) is one of the few genes with a consistent and evolutionarily conserved up-regulation in the aged brain.
View Article and Find Full Text PDFManagement of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood.
View Article and Find Full Text PDF