Background: Plasmodium falciparum malaria is a public health issue mostly seen in tropical countries. Until now, there is no effective malaria vaccine against antigens specific to the blood-stage of P. falciparum infection.
View Article and Find Full Text PDFBackground: Excess tumor necrosis factor (TNF) is implicated in the pathogenesis of hyperinflammatory experimental cerebral malaria (eCM), including gliosis, increased levels of fibrin(ogen) in the brain, behavioral changes, and mortality. However, the role of TNF in eCM within the brain parenchyma, particularly directly on neurons, remains underdefined. Here, we investigate electrophysiological consequences of eCM on neuronal excitability and cell signaling mechanisms that contribute to observed phenotypes.
View Article and Find Full Text PDFVascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation.
View Article and Find Full Text PDFThis paper aimed to investigate the influence of polymorphisms in the FCGR2A gene encoding R131H FcgRIIA variants and in the FCGR3B gene (108G > C, 114C > T, 194 A > G, 233C > A, 244 G > A and 316G > A) encoding FcgRIIIB-NA1, -NA2 and -SH variants on malaria susceptibility and antibody responses against P. falciparum merozoite antigens in Beninese children. An active malaria follow-up was conducted in infants from birth to 24 months of age in Allada, Benin.
View Article and Find Full Text PDFDiabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.
View Article and Find Full Text PDFSevere malaria occurs most in young children but is poorly understood due to the absence of a developmentally-equivalent rodent model to study the pathogenesis of the disease. Though functional and quantitative deficiencies in innate response and a biased T helper 1 (Th1) response are reported in newborn pups, there is little information available about this intermediate stage of the adaptive immune system in murine neonates. To fill this gap in knowledge, we have developed a mouse model of severe malaria in young mice using 15-day old mice (pups) infected with Plasmodium chabaudi.
View Article and Find Full Text PDF