The post-genomic era has completed its first decade. During this time, we have seen an attempt to understand life not just through the study of individual isolated processes, but through the appreciation of the amalgam of complex networks, within which each process can influence others. Greatly benefiting this view has been the study of the epigenome, the set of DNA and histone protein modifications that regulate gene expression and the function of regulatory non-coding RNAs without altering the DNA sequence itself.
View Article and Find Full Text PDFThe chromatin-remodelling complex SNF2-related CBP activator protein (SRCAP) regulates chromatin structure in yeast by modulating the exchange of histone H2A for the H2A.Z variant. Here, we have investigated the contribution of H2A.
View Article and Find Full Text PDFProtein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B.
View Article and Find Full Text PDF