Publications by authors named "Nadia Amorim"

Objective: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear.

View Article and Find Full Text PDF

Purpose: Improvements in breast cancer management continue to increase survival and life expectancy after treatment. Yet the adverse effects of treatment may persist long term, threatening physical, psychological, and social wellbeing, leading to impaired quality of life (QOL). Upper-body morbidity (UBM) such as pain, lymphoedema, restricted shoulder range of motion (ROM), and impaired function are widely reported after breast cancer treatment, but evidence demonstrating its impact on QOL is inconsistent.

View Article and Find Full Text PDF

Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production.

View Article and Find Full Text PDF

The negative impact of irradiation or diet on the metabolic and immune profiles of cancer survivors have been previously demonstrated. The gut microbiota plays a critical role in regulating these functions and is highly sensitive to cancer therapies. The aim of this study was to investigate the effect of irradiation and diet on the gut microbiota and metabolic or immune functions.

View Article and Find Full Text PDF

are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of species.

View Article and Find Full Text PDF

Background: There is mounting evidence for the therapeutic use of faecal microbiota transplant (FMT) in numerous chronic inflammatory diseases. Germ free mice are not always accessible for FMT research and hence alternative approaches using antibiotic depletion prior to FMT in animal studies are often used. Hence, there is a need for standardising gut microbiota depletion and FMT methodologies in animal studies.

View Article and Find Full Text PDF

The gut microbiota is reported to modulate the immune response in hepatocellular carcinoma (HCC). Here, we employ metagenomic and metabolomic studies to characterise gut microbiota in patients with non-alcoholic fatty liver disease (NAFLD) related cirrhosis, with or without HCC, and evaluate its effect on the peripheral immune response in an ex vivo model. We find that dysbiosis characterises the microbiota of patients with NAFLD-cirrhosis, with compositional and functional shifts occurring with HCC development.

View Article and Find Full Text PDF

Background: Metabolic complications are highly prevalent in cancer survivors treated with irradiation but the underlying mechanisms remain unknown.

Methods: Chow or high fat-fed C57Bl/6J mice were irradiated (6Gy) before investigating the impact on whole-body or skeletal muscle metabolism and profiling their lipidomic signature. Using a transgenic mouse model (Tg:Pax7-nGFP), we isolated muscle progenitor cells (satellite cells) and characterised their metabolic functions.

View Article and Find Full Text PDF

Three families of New World monkeys, the Pitheciidae, Atelidae, and Cebidae, are currently recognized. The monophyly of the Cebidae is supported unequivocally by the presence of ten unique Alu elements, which are absent from the other two families. In this paper, the five genomic regions containing these Alu elements were sequenced in specimens representing nine capuchin (Cebus, Sapajus) species in order to identify mutations that may help elucidate the taxonomy and phylogenetic relationships of the cebids.

View Article and Find Full Text PDF