Publications by authors named "Nadia Abutaleb"

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare, fatal genetic disease that accelerates atherosclerosis. With a limited pool of HGPS patients, clinical trials face unique challenges and require reliable preclinical testing. We previously reported a 3D tissue engineered blood vessel (TEBV) microphysiological system fabricated with iPSC-derived vascular cells from HGPS patients.

View Article and Find Full Text PDF

Human tissue-engineered blood vessels (TEBVs) that exhibit vasoactivity can be used to test drug toxicity, modulate pro-inflammatory cytokines, and model disease states in vitro. We developed a novel device to fabricate arteriole-scale human endothelialized TEBVs in situ with smaller volumes and higher throughput than previously reported. Both primary and induced pluripotent stem cell (iPSC)-derived cells can be used.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) offer a potentially unlimited source to generate endothelial cells (ECs) for numerous applications. Here, we describe a 7-day protocol to differentiate up to 55 million vascular endothelial cells (viECs) from 3.5 million human iPSCs using small molecules to regulate specific transcription factors.

View Article and Find Full Text PDF

The vascular endothelium is present in all organs and blood vessels, facilitates the exchange of nutrients and waste throughout different organ systems in the body, and sets the tone for healthy vessel function. Mechanosensitive in nature, the endothelium responds to the magnitude and temporal waveform of shear stress in the vessels. Endothelial dysfunction can lead to atherosclerosis and other diseases.

View Article and Find Full Text PDF

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder caused by a point mutation in the Lamin A gene that produces the protein progerin. Progerin toxicity leads to accelerated aging and death from cardiovascular disease. To elucidate the effects of progerin on endothelial cells, we prepared tissue-engineered blood vessels (viTEBVs) using induced pluripotent stem cell-derived smooth muscle cells (viSMCs) and endothelial cells (viECs) from HGPS patients.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) provide a potentially unlimited cell source for producing autologous tissue-engineered vascular grafts (TEVGs), which currently suffer from low mechanical strength. In this issue of Cell Stem Cell, Luo et al. (2020) describe optimized culture media and a mechanical stretching regimen to produce hiPSC-derived TEVGs with mechanical behavior similar to that of natural vessels.

View Article and Find Full Text PDF

Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies.

View Article and Find Full Text PDF

The autoinducer-2 (AI-2) quorum sensing system is involved in a range of population-based bacterial behaviors and has been engineered for cell-cell communication in synthetic biology systems. Investigation into the cellular mechanisms of AI-2 processing has determined that overexpression of uptake genes increases AI-2 uptake rate, and genomic deletions of degradation genes lowers the AI-2 level required for activation of reporter genes. Here, we combine these two strategies to engineer an Escherichia coli strain with enhanced ability to detect and respond to AI-2.

View Article and Find Full Text PDF

Adult skeletal muscle has a robust capacity for self-repair, owing to synergies between muscle satellite cells and the immune system. In vitro models of muscle self-repair would facilitate the basic understanding of muscle regeneration and the screening of therapies for muscle disease. Here, we show that the incorporation of macrophages into muscle tissues engineered from adult-rat myogenic cells enables near-complete structural and functional repair after cardiotoxic injury in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial cells are being engineered to boost production of biologics and chemicals, but their performance can suffer due to the synthetic genetic components.
  • Developing microbial consortia with specialized subpopulations may enhance production but faces challenges in controlling their composition and function.
  • The new approach utilizes quorum sensing molecules and encapsulation techniques to create "quantized quorums," allowing for precise control over subpopulation activation while minimizing interaction with the main product-producing cells.
View Article and Find Full Text PDF