Publications by authors named "Nadhratun N Mobarak"

Nasal packing is a critical procedure in postoperative care and trauma management aimed at controlling bleeding, providing structural support, and promoting tissue healing. However, conventional nasal packs often lead to discomfort, infection risks, and secondary tissue damage. To address these challenges, this study explores the potential use of biodegradable and biocompatible gelatin-carrageenan composite scaffolds as an alternative nasal packing material.

View Article and Find Full Text PDF

The utilization of UV-Vis spectroscopy with amino-functionalized carbon quantum dots (NCQD) as a positive fluorophore reagent for chloride sensing in oil marks a notable advancement in analytical spectroscopy chemistry. This approach streamlines the detection process by eliminating the need for lengthy procedures and pretreatment steps typically associated with chloride detection in edible oil. By incorporating NCQD in chloride detection within the oil matrix, the wavelength analysis transitions from the UV to the visible region.

View Article and Find Full Text PDF

Pyrolyzed Fe-N-C-based catalysts, particularly FeN, are reported to show enhanced catalytic activity for some chemical reactions, particularly for the oxygen reduction reaction (ORR). Here, we present a computational study to investigate another pyrolyzed Fe-N-C-based catalyst, FeN, adsorbed on graphene with special emphasis on the edges of graphene nanoribbons (both zig-zag and armchair configurations) as a candidate for Fe dual-atom catalysts (Fe-DACs). Utilizing density functional theory calculations along with microkinetic simulations, we investigate the influence of graphitic edges on the stability and ORR activity of Fe-DAC active sites.

View Article and Find Full Text PDF

Respiratory diseases have a major impact on global health. The airway epithelium, which acts as a frontline defence, is one of the most common targets for inhaled allergens, irritants, or micro-organisms to enter the respiratory system. In the tissue engineering field, biomaterials play a crucial role.

View Article and Find Full Text PDF

Accurate, label-free, and rapid methods for measuring phosphorus concentrations are essential in a hydroponic system, as excessive or insufficient phosphorus levels can adversely affect plant growth, human health, and environmental sustainability. In this study, we demonstrate the advantages of hybrid machine learning models compared to single machine learning models in predicting phosphorus concentration based on the absorbance dataset. Three machine learning classifiers- Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)- were employed as bases for single and hybrid machine learning models.

View Article and Find Full Text PDF

An optical sensor-based localized surface plasmon resonance (LSPR) sensor was demonstrated for sensitive and selective chlorophyll detection through the integration of amino-functionalized carbon quantum dots (NCQD) and triangle silver nanoparticles (AgNPs). The additions of amino groups to the CQD enhance the detection of chlorophyll through electrostatic interactions. AgNPs-NCQD composite was fabricated on the surface of the silanized glass slide using the self-assembly technique.

View Article and Find Full Text PDF

This research investigates the physicochemical properties of biopolymer succinyl-κ-carrageenan as a potential sensing material for NH Localized Surface Plasmon Resonance (LSPR) sensor. Succinyl-κ-carrageenan was synthesised by reacting κ-carrageenan with succinic anhydride. FESEM analysis shows succinyl-κ-carrageenan has an even and featureless topology compared to its pristine form.

View Article and Find Full Text PDF

This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH, OH, and COOH functional groups.

View Article and Find Full Text PDF

This research demonstrates a one-step modification process of biopolymer carrageenan active sites through functional group substitution in κ-carrageenan structures. The modification process improves the electronegative properties of κ-carrageenan derivatives, leading to enhancement of the material's performance. Synthesized succinyl κ-carrageenan with a high degree of substitution provides more active sites for interaction with analytes.

View Article and Find Full Text PDF

For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume.

View Article and Find Full Text PDF

The study of binding affinity is essential in surface plasmon resonance (SPR) sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb and Hg ions according to their SPR response using a gold/silver/gold/chitosan-graphene oxide (Au/Ag/Au/CS-GO) sensor for the concentration range of 0.1-5 ppm.

View Article and Find Full Text PDF