The gp91phox-containing NADPH oxidase is the major source of reactive oxygen species (ROS) in the cardiovascular system and inactivation of gp91phox has been reported to blunt hypertension and cardiac hypertrophy seen in angiotensin (Ang) II-infused animals. In the current study, we sought to determine the role of gp91phox-derived ROS on cardiovascular outcomes of chronic exposure to Ang II. The gp91phox-deficient mice were crossed with transgenic mice expressing active human renin in the liver (TTRhRen).
View Article and Find Full Text PDFAngiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation.
View Article and Find Full Text PDFMice deficient for angiotensinogen (AGT), or other components of the renin-angiotensin system, show a high rate of neonatal mortality correlated with severe renal abnormalities including hydronephrosis, hypertrophy of renal arteries, and an impaired ability to concentrate urine. Although transgenic replacement of systemic or adipose, but not renal, AGT in AGT-deficient mice has previously been reported to correct some of these renal abnormalities, the tissue target for this complementation has not been defined. In the current study, we have used a novel transgenic strategy to restore the peptide product of the renin-angiotensin system, angiotensin II, exclusively in the brain of AGT-deficient mice and demonstrate that brain-specific angiotensin II can correct the hydronephrosis and partially correct renal dysfunction seen in AGT-deficient mice.
View Article and Find Full Text PDF