Publications by authors named "Nadezhda V Stoletova"

This article is a continuation of our previous research on the catalytic capability of a chiral copper complex based on commercially available ()-2-aminomethylpyrrolidine and 3,5-di--butylsalicylaldehyde with various counter-anions in the asymmetric Henry reaction. Our findings indicate that depending on the type of base used, chiral nitroalcohols with yields up to 98% and values up to 77%, as well as β-nitrostyrenes with yields up to 88%, can be produced. Additionally, it has been found that the outcome of the reaction and the catalytic properties of copper (II) complexes ()- and ()- are influenced by the structure of the aldehyde used.

View Article and Find Full Text PDF

Currently, non-proteinogenic α-amino acids (α-AAs) have attracted increasing interest in bio- and medicinal chemistry. In this context, the first protocol for the asymmetric synthesis of artificial α-AAs featuring a 3,4-dihydroisoquinolone core with two stereogenic centers was successfully elaborated. A straightforward Rh(III)-catalysed C-H activation/annulation reaction of various aryl hydroxamates with a set of robust and readily available chiral Ni(II) complexes, which have allylic appendages derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe), allowed incorporation of a 3,4-dihydroisoquinolone scaffold into the chiral amino acid residue.

View Article and Find Full Text PDF

Correction for 'An asymmetric metal-templated route to amino acids with an isoquinolone core a Rh(III)-catalyzed coupling of aryl hydroxamates with chiral propargylglycine Ni(II) complexes' by Mikhail A. Arsenov , , 2022, , 9385-9391, https://doi.org/10.

View Article and Find Full Text PDF

A general protocol for the asymmetric synthesis of artificial amino acids (AAs) comprising an isoquinolone skeleton was successfully elaborated a straightforward Rh(III)-catalyzed C-H activation/annulation of various aryl hydroxamates with a series of robust chiral propargylglycine Ni(II) complexes derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe) in a green solvent (methanol) under mild conditions (at room temperature under air). Notably, in the case of phenylalanine-derived complexes, the formation of unfavorable 4-substituted isoquinolone regioisomers was achieved by a catalyst control for the first time. The subsequent acidic decomposition of the obtained Ni(II) complexes provides the target unnatural α- and α,α-disubstituted AAs with an isoquinolone core in an enantiopure form.

View Article and Find Full Text PDF

Here we report the first synthesis of two diastereomeric cationic octahedral Co(III) complexes based on commercially available (,)-1,2-diphenylethylenediamine and salicylaldehyde. Both diastereoisomers with opposite chiralities at the metal center (Λ and Δ configurations) were prepared. The new Co(III) complexes possessed both acidic hydrogen-bond donating (HBD) NH moieties and nucleophilic counteranions and operate as bifunctional chiral catalysts for the challenging kinetic resolution of terminal and disubstituted epoxides by the reaction with CO under mild conditions.

View Article and Find Full Text PDF