Publications by authors named "Nadezhda V Rubtsova"

The Muya Valley vole (Microtus mujanensis) has a constant diploid chromosome number of 2n = 38, but an unstable karyotype with polymorphic chromosome pairs. Here, we describe 4 karyotypic variants involving 2 polymorphic chromosome pairs, MMUJ8 and MMUJ14, in 6 animals from Buryatia using a combination of GTG-banding and chromosome painting with M. agrestis probes.

View Article and Find Full Text PDF

Glires represent a eutherian clade consisting of rodents and lagomorphs (hares, rabbits, and pikas). Chromosome evolution of Glires is known to have variable rates in different groups: from slowly evolving lagomorphs and squirrels to extremely rapidly evolving muroids. Previous interordinal homology maps between slowly evolving Glires were based on comparison with humans.

View Article and Find Full Text PDF

The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics-cross-species chromosome painting-is limited.

View Article and Find Full Text PDF

Recent molecular and morphological studies place Artiodactyla and Cetacea into the order Cetartiodactyla. Within the Cetartiodactyla such families as Bovidae, Cervidae, and Suidae are well studied by comparative chromosome painting, but many taxa that are crucial for understanding cetartiodactyl phylogeny remain poorly studied. Here we present the genome-wide comparative maps of five cetartiodactyl species obtained by chromosome painting with human and dromedary paint probes from four taxa: Cetacea, Hippopotamidae, Giraffidae, and Moschidae.

View Article and Find Full Text PDF

The order Perissodactyla, the group of odd-toed ungulates, includes three extant families: Equidae, Tapiridae, and Rhinocerotidae. The extremely rapid karyotypic diversification in perissodactyls has so far prevented the establishment of genome-wide homology maps between these three families by traditional cytogenetic approaches. Here we report the first genome-wide comparative chromosome maps of African rhinoceroses, four tapir species, four equine species, and humans.

View Article and Find Full Text PDF

Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E.

View Article and Find Full Text PDF

Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus).

View Article and Find Full Text PDF