Publications by authors named "Nadezhda V Kovaleva"

New conjugates of amiridine and salicylic derivatives (salicylamide, salicylimine, and salicylamine) with different lengths of alkylene spacers were designed, synthesized, and evaluated as potential multifunctional central nervous system therapeutic agents for Alzheimer's disease (AD). Conjugates demonstrated high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition (IC: AChE, 0.265-4.

View Article and Find Full Text PDF

A series of 2-arylhydrazinylidene-3-oxo acids (AHOAs) was prepared by dealkylation of alkyl-2-arylhydrazinylidene-3-oxo-3-alkanoates with AlBr. Using X-Ray, NMR spectroscopy, and quantum mechanical calculations (QM), the existence of AHOAs in a thermodynamically favorable Z-form stabilized by two intramolecular H-bonds was established. All AHOAs had acceptable ADME parameters.

View Article and Find Full Text PDF

Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations.

View Article and Find Full Text PDF

New amiridine-thiouracil conjugates with different substituents in the pyrimidine fragment (R = CH , CF Н, CF , (CF ) H) and different spacer lengths (n = 1-3) were synthesized. The conjugates rather weakly inhibit acetylcholinesterase (AChE) and exhibit high inhibitory activity (IC up to 0.752 ± 0.

View Article and Find Full Text PDF

We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results.

View Article and Find Full Text PDF

A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE.

View Article and Find Full Text PDF

4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity.

View Article and Find Full Text PDF

One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests.

View Article and Find Full Text PDF

The development of multi-target-directed ligands (MTDLs) would provide effective therapy of neurodegenerative diseases (ND) with complex and nonclear pathogenesis. A promising method to create such potential drugs is combining neuroactive pharmacophoric groups acting on different biotargets involved in the pathogenesis of ND. We developed a synthetic algorithm for the conjugation of indole derivatives and methylene blue (), which are pharmacophoric ligands that act on the key stages of pathogenesis.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment.

View Article and Find Full Text PDF

New conjugates of tacrine and salicylamide with alkylene spacers were synthesized and evaluated as potential multifunctional agents for Alzheimer's disease (AD). The compounds exhibited high acetylcholinesterase (AChE, IC to 0.224 μM) and butyrylcholinesterase (BChE, IC to 0.

View Article and Find Full Text PDF

Using two ways of functionalizing amiridine-acylation with chloroacetic acid chloride and reaction with thiophosgene-we have synthesized new homobivalent bis-amiridines joined by two different spacers-bis--acyl-alkylene () and bis--thiourea-alkylene () -as potential multifunctional agents for the treatment of Alzheimer's disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug-drug interactions arising from hydrolytic biotransformation.

View Article and Find Full Text PDF

A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer's disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target).

View Article and Find Full Text PDF

We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring.

View Article and Find Full Text PDF

An expanded series of alkyl 2-arylhydrazinylidene-3-oxo-3-polyfluoroalkylpropionates (HOPs) 3 was obtained via Cu(OAc)-catalyzed azo coupling. All were nanomolar inhibitors of carboxylesterase (CES), while moderate or weak inhibitors of acetylcholinesterase and butyrylcholinesterase. Steady-state kinetics studies showed that HOPs 3 are mixed type inhibitors of the three esterases.

View Article and Find Full Text PDF

New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl () or aminoalkyl () spacers were synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound , 2,6-di--butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC(AChE) = 1.

View Article and Find Full Text PDF

New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to -tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer's disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide () exhibited an IC (AChE) = 0.

View Article and Find Full Text PDF

Cholines acylated with unsaturated fatty acids are a recently discovered family of endogenous lipids. However, the data on the biological activity of acylcholines remain very limited. We hypothesized that acylcholines containing residues of arachidonic (AA-CHOL), oleic (Ol-CHOL), linoleic (Ln-CHOL), and docosahexaenoic (DHA-CHOL) acids act as modulators of the acetylcholine signaling system.

View Article and Find Full Text PDF

We synthesized conjugates of tacrine with 1,2,4-thiadiazole derivatives linked by two different spacers, pentylaminopropene (compounds 4) and pentylaminopropane (compounds 5), as potential drugs for the treatment of Alzheimer's disease (AD). The conjugates effectively inhibited cholinesterases with a predominant effect on butyrylcholinesterase (BChE). They were also effective at displacing propidium from the peripheral anionic site (PAS) of acetylcholinesterase (AChE), suggesting that they could block AChE-induced β-amyloid aggregation.

View Article and Find Full Text PDF

To search for effective and selective inhibitors of carboxylesterase (CES), a series of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher or natural alcohol moieties was synthesized via pre-transesterification of ethyl trifluoroacetylacetate with alcohols to isolate transesterificated oxoesters as lithium salts, which were then subjected to azo coupling with tolyldiazonium chloride. Inhibitory activity against porcine liver CES, along with two structurally related serine hydrolases, acetylcholinesterase and butyrylcholinesterase, were investigated using enzyme kinetics and molecular docking. Kinetics studies demonstrated that the tested keto-esters are reversible and selective mixed-type CES inhibitors.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative process whose effective treatment will require drugs that can act simultaneously on multiple pathogenic targets. Here, we present an overview of our previous multitarget studies of five groups of novel hybrid structures that combine, through spacers, five pharmacophores that have been found promising for AD treatment: γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes. Biological activity of the compounds was assessed by a battery of assays.

View Article and Find Full Text PDF

We studied the inhibitory activity of methylene blue (MB) γ-carbolines (gC) conjugates (MB-gCs) against human erythrocyte acetylcholinesterase (AChE), equine serum butyrylcholinesterase (BChE), and a structurally related enzyme, porcine liver carboxylesterase (CaE). In addition, we determined the ability of MB-gCs to bind to the peripheral anionic site (PAS) of Electrophorus electricus AChE (EeAChE) and competitively displace propidium iodide from this site. Moreover, we examined the ability of MB-gCs to scavenge free radicals as well as their influence on mitochondrial potential and iron-induced lipid peroxidation.

View Article and Find Full Text PDF

To search for effective and selective inhibitors of carboxylesterase (CaE), a series of 7-hydroxy-7-polyfluoroalkyl-4,7-dihydroazolo[5,1-c][1,2,4]triazines has been synthesized. Their inhibitory activity against acetylcholinesterase, butyrylcholinesterase, and CaE were investigated using the methods of enzyme kinetics and molecular docking. It was shown that the tested compounds are reversible selective CaE inhibitors of mixed type.

View Article and Find Full Text PDF

A new group of compounds, promising for the design of original multitarget therapeutic agents for treating neurodegenerative diseases, based on conjugates of aminoadamantane and carbazole derivatives was synthesized and investigated. Compounds of these series were found to interact with a group of targets that play an important role in the development of this type of diseases. First of all, these compounds selectively inhibit butyrylcholinesterase, block NMDA receptors containing NR2B subunits while maintaining the properties of MK-801 binding site blockers, exert microtubules stabilizing properties, and possess the ability to protect nerve cells from death at the calcium overload conditions.

View Article and Find Full Text PDF