Publications by authors named "Nadezhda Kuleva"

The molecular mechanisms of skeletal muscle dysfunction in congenital myopathies remain unclear. The present study examines the effect of a myopathy-causing mutation Q147P in β-tropomyosin on the position of tropomyosin on troponin-free filaments and on the actin–myosin interaction at different stages of the ATP hydrolysis cycle using the technique of polarized fluorimetry. Wild-type and Q147P recombinant tropomyosins, actin, and myosin subfragment-1 were modified by 5-IAF, 1,5-IAEDANS or FITC-phalloidin, and 1,5-IAEDANS, respectively, and incorporated into single ghost muscle fibers, containing predominantly actin filaments which were free of troponin and tropomyosin.

View Article and Find Full Text PDF

Reactive oxidative species (ROS) play important roles in cellular signaling but can also modify and often functionally inactivate other biomolecules. Thus, cells have developed effective enzymatic and nonenzymatic strategies to scavenge ROS. However, under oxidative stress, ROS production is able to overwhelm the scavenging systems, increasing the levels of functionally impaired proteins.

View Article and Find Full Text PDF

Oxidative stress caused by an imbalance of the production of "reactive oxygen species" (ROS) and cellular scavenging systems is known to a play a key role in the development of various diseases and aging processes. Such elevated ROS levels can damage all components of cells, including proteins, lipids and DNA. Here, we study the influence of highly reactive ROS species on skeletal muscle proteins in a rat model of acute oxidative stress caused by X-ray irradiation at different time points.

View Article and Find Full Text PDF