Publications by authors named "Nadezhda A Popova"

The digital twin concept lays the foundation of the virtual vibrational analytics suggested in the current paper. The latter presents extended virtual experiments aimed at determining the specific features of the optical spectra of the studied molecules that provide reliable express analysis of the body spatial structure and chemical content. Reduced graphene oxide was selected as the virtual experiment goal.

View Article and Find Full Text PDF

The standard D-G-2D pattern of Raman spectra of amorphous carbons is considered from the viewpoint of graphene domains presenting their basic structure units (BSUs) in terms of molecular spectroscopy. The molecular approximation allows connecting the characteristic D-G doublet spectra image of one-phonon spectra with a considerable dispersion of the C=C bond lengths within graphene domains, governed by size, heteroatom necklace of BSUs as well as BSUs packing. The interpretation of 2D two-phonon spectra reveals a particular role of electrical anharmonicity in the spectra formation and attributes this effect to a high degree of the electron density delocalization in graphene domains.

View Article and Find Full Text PDF

Applied to graphene oxide, the molecular theory of graphene considers its oxide as a final product in the succession of polyderivatives related to a series of oxidation reactions involving different oxidants. The graphene oxide structure is created in the course of a stepwise computational synthesis of polyoxides of the (5,5) nanographene molecule governed by an algorithm that takes into account the molecule's natural radicalization due to the correlation of its odd electrons, the extremely strong influence of the structure on properties, and a sharp response of the molecule behavior on small actions of external factors. Taking these together, the theory has allowed for a clear, transparent and understandable explanation of the hot points of graphene oxide chemistry and suggesting reliable models of both chemically produced and chemically reduced graphene oxides.

View Article and Find Full Text PDF

This paper highlights the molecular essence of graphene and presents its hydrogenation from the viewpoint of the odd-electron molecular theory. This chemical transformation was performed computationally, using a particular algorithm, through the stepwise addition of either hydrogen molecules or hydrogen atoms to a pristine graphene molecule. The graphene was considered to be a membrane, such that either both sides or just one side of the membrane was accessible to adsorbate, and the atoms on the perimeter of the membrane were either fixed (fixed membrane) or free to move (free-standing membrane).

View Article and Find Full Text PDF

The response of a nanographene sheet to external stresses was considered in terms of a mechanochemical reaction. The quantum chemical realization of the approach was based on the coordinate-of-reaction concept for the purpose of introducing a mechanochemical internal coordinate (MIC) that specifies a deformational mode. The related force of response is calculated as the energy gradient along the MIC, while the atomic configuration is optimized over all of the other coordinates under the MIC constant-pitch elongation.

View Article and Find Full Text PDF