Metabolic rearrangements that occur during depletion of essential nutrients can lead to accumulation of potentially dangerous metabolites. Here we showed that depletion of phosphate (P), accompanied by a sharp inhibition of growth and respiration, caused a transient excess of intracellular cysteine due to a decrease in the rate of protein synthesis. High cysteine level can be dangerous due to its ability to produce ROS and reduce Fe to Fenton-reactive Fe.
View Article and Find Full Text PDFIn most previous studies the sensitivity of Escherichia coli outer membrane mutants to ciprofloxacin (CF) was studied by MIC method. In the present work, the early response of these mutants to CF was studied using physiological and biochemical methods and electrochemical sensors. The use of sensors made it possible to monitor dissolved oxygen, potassium and extracellular sulfide continuously directly in growing cultures in real time.
View Article and Find Full Text PDFUsing rpoS, tolC, ompF, and recA knockouts, we investigated their effect on the physiological response and lethality of ciprofloxacin in E. coli growing at different rates on glucose, succinate or acetate. We have shown that, regardless of the strain, the degree of changes in respiration, membrane potential, NAD/NADH ratio, ATP and glutathione (GSH) strongly depends on the initial growth rate and the degree of its inhibition.
View Article and Find Full Text PDFAerobically growing Escherichia coli generates superoxide flux into the periplasm via the oxidation of dihydromenaquinone and simultaneously carries out continuous transmembrane cycling of glutathione (GSH). Here we have shown that, under the conditions of a gradual decrease in dissolved oxygen (dO), characteristic of batch culture, the global regulatory system ArcB/ArcA can play an important role in the coordinated control of extracellular superoxide and GSH fluxes and their interaction with intracellular antioxidant systems. The lowest superoxide production was observed in the menA and arcB mutants, while the atpA, atpC and atpE mutants generated superoxide 1.
View Article and Find Full Text PDFIncreased intracellular cysteine poses a potential danger to cells due to the high ability of cysteine to reduce free iron and promote the Fenton reaction. Here, we studied ways to maintain cysteine homeostasis in E. coli cells while inhibiting protein synthesis with valine or chloramphenicol.
View Article and Find Full Text PDFAmino acid starvation causes an RelA-dependent increase in the regulatory nucleotide (p)ppGpp that leads to pleiotropic changes in Escherichia coli metabolism, but the role of (p)ppGpp in regulation of respiration remains unclear. Here we demonstrate that amino acid starvation is accompanied by sharp RelA-dependent inhibition of respiration. The sharp phase of inhibition is absent in relA mutants, and can be prevented by translation inhibitors chloramphenicol and tetracycline, which abolish accumulation of (p)ppGpp.
View Article and Find Full Text PDFAn in-depth understanding of the physiological response of bacteria to antibiotic-induced stress is needed for development of new approaches to combatting microbial infections. Fluoroquinolone ciprofloxacin causes phase alterations in Escherichia coli respiration and membrane potential that strongly depend on its concentration. Concentrations lower than the optimal bactericidal concentration (OBC) do not inhibit respiration during the first phase.
View Article and Find Full Text PDFThe aim of the study was to elucidate a possible relationship between transmembrane cycling of glutathione and changes in levels of external superoxide. Exposure of growing Escherichia coli to exogenous reactive oxygen species (ROS) generated by xanthine and xanthine oxidase (XO) stimulates reversible glutathione (GSH) efflux from the cells that is considerably lowered under phosphate starvation. This GSH efflux is prevented by exogenous SOD, partially inhibited by catalase, and is not dependent on the GSH exporter CydDC.
View Article and Find Full Text PDFAmong all polyphenols tested (tannic acid and flavonoids belonging to different subclasses) only tannin and quercetin significantly enhanced resistance of Escherichia coli to peroxide stress. Pretreatment of the cells with quercetin and tannin resulted in a decrease in the growth arrest duration under moderate H(2)O(2) concentration (2 mM) and an increase in survival under high (10 mM) doses. The shorter growth recovery period in pretreated cells was connected with more rapid H(2)O(2) elimination because of induced activity of scavenging enzymes.
View Article and Find Full Text PDF