Publications by authors named "Nader Rahimi"

Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival.

View Article and Find Full Text PDF

Objective: Obesity is a complex disorder and is linked to chronic diseases such as type 2 diabetes. Major intrinsically disordered NOTCH2-associated receptor2 (MINAR2) is an understudied protein with an unknown role in obesity and metabolism. The purpose of this study was to determine the impact of Minar2 on adipose tissues and obesity.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how VEGFR-2, a protein important for blood vessel growth, works in the body and in diseases like cancer.
  • They found that a protein called PRMT4 helps modify VEGFR-2 by adding a special chemical mark called methylation, which affects how VEGFR-2 sends signals.
  • Understanding this process could help create new drugs that target VEGFR-2 to treat diseases related to blood vessel growth.
View Article and Find Full Text PDF

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress β-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs.

View Article and Find Full Text PDF

Background: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated.

Results: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin.

View Article and Find Full Text PDF

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia.

View Article and Find Full Text PDF

Background: The cell adhesion molecule IGPR-1 regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy and plays important roles in angiogenesis and tumor growth; however, the molecular mechanism governing the cell surface levels of IGPR-1 remains unknown.

Results: In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells.

View Article and Find Full Text PDF

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function.

View Article and Find Full Text PDF

Parkinson's disease is the second most common human neurodegenerative disease. Motor control impairment represents a key clinical hallmark and primary clinical symptom of the disease, which is further characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of α-synuclein aggregations. We have identified major intrinsically disordered NOTCH2-associated receptor 2 encoded by , a previously uncharacterized protein that is highly conserved in humans and other species.

View Article and Find Full Text PDF

The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis.

View Article and Find Full Text PDF

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelium and endothelium.

View Article and Find Full Text PDF

Lysine-specific methyltransferase Set7/9 (KMT7) belongs to the SET domain family of proteins. Besides the SET domain, Set7/9 also contains a so-called MORN (Membrane Occupation and Recognition Nexus) domain whose function in high eukaryotes is largely unknown. Set7/9 has been shown to specifically methylate both histones H1 and H3 as well as a number of non-histone substrates, including p53, E2F1, RelA, AR, and other important transcription factors.

View Article and Find Full Text PDF

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear β-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear β-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APC) mouse model. Haploinsufficient c-Cbl mice (APC c-Cbl) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency.

View Article and Find Full Text PDF

Casitas B lymphoma (c-Cbl) is an E3 ubiquitin ligase and a negative regulator of colorectal cancer (CRC). Despite its high expression in immune cells, the effect of c-Cbl on the tumor microenvironment remains poorly understood. Here we demonstrate that c-Cbl alters the tumor microenvironment and suppresses Programmed cell death-1 (PD-1) protein, an immune checkpoint receptor.

View Article and Find Full Text PDF