Publications by authors named "Nader N Nasief"

Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp.

View Article and Find Full Text PDF

Understanding subtle aspects of hydrogen bonding is a challenging but crucial task to improve our ability to design ligands with high affinity for protein hosts. To gain a deeper understanding of these aspects, we investigated a series of thrombin inhibitors in which the basicity of the ligand's group that accepts an H-bond from Gly216 was modulated via bioisosterism; e.g.

View Article and Find Full Text PDF

Predicting how binding affinity responds to ligand structural modifications in structure-activity relationship studies (SAR) is a major challenge in medicinal chemistry. This is particularly true when two or more of these modifications are carried out simultaneously. In this study, we present binding affinity data from several series of thermolysin inhibitors in which simultaneous structural modifications were investigated to determine whether they are cooperative or additive.

View Article and Find Full Text PDF

The thermodynamic consequences of systematic modifications in a ligand side chain that binds in a shallow hydrophobic pocket, in the presence and absence of a neighboring ligand carboxylate group, were evaluated using isothermal titration calorimetry (ITC). Data revealed that the carboxylate significantly changes the relative thermodynamic signatures of these modifications, likely via altering the H-bonding/organization status of the hydration waters both in the unbound and the bound states. This carboxylate group was found to be proenthalpic, antientropic in some cases, and antienthalpic, proentropic in others.

View Article and Find Full Text PDF

Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2' pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable.

View Article and Find Full Text PDF