Publications by authors named "Nadejda Lopatina"

Although it has been known for quite some time that genomic methylation is significantly altered in aging and neoplastic tissues and cells, the underlying mechanisms responsible for these alterations are not yet known. Since DNA methylation affects many different cellular processes including, most significantly, gene expression, elucidation of the basis for aberrations in DNA methylation in aging and cancer is of high priority. To address this problem, we sought to analyze changes in gene expression, protein production and enzyme activity of the three major DNA methyltransferases (Dnmtl, 3a, and 3b) in aging and neoplastically-transformed WI-38 human fetal lung fibroblasts.

View Article and Find Full Text PDF

Telomerase is active in about 90% of cancers and contributes to the immortality of cancer cells by maintaining the lengths of the ends of chromosomes. Undifferentiated embryonic human teratocarcinoma (HT) cells were found to express high levels of hTERT, the catalytic subunit of telomerase, and the hTERT promoter was unmethylated in these cells. Retinoic acid (RA)-induced differentiation led to hTERT gene silencing and increased methylation of the hTERT promoter.

View Article and Find Full Text PDF

Genomic methylation, which influences many cellular processes such as gene expression and chromatin organization, generally declines with cellular senescence although some genes undergo paradoxical hypermethylation during cellular aging and immortalization. To explore potential mechanisms for this process, we analyzed the methylating activity of three DNA methyltransferases (Dnmts) in aging and immortalized WI-38 fibroblasts. Overall maintenance methylating activity by the Dnmts greatly decreased during cellular senescence.

View Article and Find Full Text PDF