Publications by authors named "Nadejda B Matsko"

We present a Fourier transform (FT) based analytical method that allows to obtain of ultrastructural details from TEM images at sub-nanometer scale applying a selective filtering for singular macromolecule electron microscopy density information. It can be applied to high-pressure frozen, frozen hydrated and epoxy freeze substituted and embedded biological species. Both 2D projections and orthoslices from reconstructed tomograms can be used as a source of structural information.

View Article and Find Full Text PDF

Zinc(II) oxide nanoparticles were used for the stabilization of dicyclopentadiene (DCPD)-water-based high internal phase emulsions (HIPEs), which were subsequently cured using ring-opening metathesis polymerization (ROMP). The morphology of the resulting ZnO-pDCPD nanocomposite foams was investigated in correlation to the nanoparticle loading and nanoparticle surface chemistry. While hydrophilic ZnO nanoparticles were found to be unsuitable for stabilizing the HIPE, oleic acid coated, yet hydrophobic ZnO nanoparticles were effective HIPE stabilizers, yielding polymer foams with ZnO nanoparticles located predominately at their surface.

View Article and Find Full Text PDF

Nanocomposite polyHIPE foams with open-cellular morphology were obtained using nanoparticles (γFe2O3/Fe3O4), surfactant (Pluronic L121) or nanoparticle/surfactant stabilized dicyclopentadiene high internal phase emulsions (DCPD HIPEs). Upon curing, cavity sizes were found to vary drastically between 950 ± 360 µm down to 7 ±3 µm depending on the HIPE formulations. As-obtained nanocomposite polyHIPE foams were functionalized using elemental bromine in THF.

View Article and Find Full Text PDF

Analytical transmission electron microscopy (ATEM) offers great flexibility in identification of the structural-chemical organization of soft materials at the level of individual macromolecules. However, the determination of mechanical characteristics such as hardness/elasticity of the amorphous and polycrystalline organic substances by ATEM has been problematic so far. Here, we show that energy filtered TEM (EFTEM) measurements enable direct identification and study of mechanical properties in complex (bio-)polymer systems of relevance for different industrial and (bio-)medical applications.

View Article and Find Full Text PDF

The analysis of nanomaterials in pharmaceutical or cosmetic preparations is an important aspect both in formulation development and quality control of marketed products. Despite the increased popularity of nanoparticulate compounds especially in dermal preparations such as emulsions, methods and protocols of analysis for the characterization of such systems are scarce. This work combines an original sample preparation procedure along with different methods of analytical electron microscopy for the comprehensive analysis of fluid or semi-solid dermal preparations containing nanoparticulate material.

View Article and Find Full Text PDF

Using a series of uranyl acetate stained or platinum-palladium shadowed organic samples, an empirical analytical method to extract surface information from energy-filtered transmission electron microscopy (EFTEM) images is described. The distribution of uranium or platinum-palladium atoms, which replicate the sample surface topography, have been mathematically extracted by dividing the image acquired in the valence bulk plasmon energy region (between 20 and 30 eV) by the image acquired at the carbon K ionization edge (between 284 and 300 eV). The resulting plasmon-to-carbon ratio (PCR) image may be interpreted as a precise metal replica of the sample surface.

View Article and Find Full Text PDF

During the last decades, the focus of research in pharmaceutical technology has steadily shifted towards the development and optimisation of nano-scale drug delivery systems. As a result, electron microscopic methods are increasingly employed for the characterisation of pharmaceutical systems such as nanoparticles and microparticles, nanoemulsions, microemulsions, solid lipid nanoparticles, different types of vesicles, nanofibres and many more. Knowledge of the basic properties of these systems is essential for an adequate microscopic analysis.

View Article and Find Full Text PDF

The characterization of the surface functionalization of polymer particles and subsequent grafting of hydrated polymer chains from their surface by microscopic techniques are essential to obtain reliable data about the actual morphology of the system. Since the size range of morphological features of functionalized polymer surfaces has long ago reached the lower end of the nanometer scale, classical light microscopy and dynamic light scattering have been replaced by electron and atomic force microscopy techniques which provide sufficient resolution for the visualization of nano-sized structures. Moreover, only polymer particle aggregates and fine organization of hydrated polymer chains which are not efficiently characterized by particle size measurements can be detected accurately with microscopy methods.

View Article and Find Full Text PDF

The characterisation of pharmaceutical formulations by microscopic techniques is essential to obtain reliable data about the actual morphology of the system. Since the size range of colloidal drug delivery systems has long ago reached the lower end of the nanometer scale, classical light microscopy has been replaced by electron microscopy techniques which provide sufficient resolution for the visualisation of nano-sized structures. Indeed, the superior resolution and methodological versatility of electron microscopy has rendered this technique an indispensable tool for the analysis of nanoemulsions.

View Article and Find Full Text PDF

Liposomes are ideal dermal drug delivery systems because of their ability to alter the biodistribution profile of incorporated drugs. In a novel approach to optimize the liposomal microstructure, lysine derivatives were employed. The effect of the oligopeptides Lys-5 and Lys-7 on the structure as well as on the skin permeation of the antimycotic drug fluconazole in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine vesicles was studied using a variety of techniques.

View Article and Find Full Text PDF

Biocalcification is a widespread process of forming hard tissues like bone and teeth in vertebrates. It is also a topic connecting life sciences and earth sciences: calcified skeletons and shells deposited as sediments represent the earth's fossil record and are of paramount interest for biogeochemists trying to get an insight into the past of our planet. This study reports on the role of silicon in the early biocalcification steps, where silicon and calcium were detected on the surface of cyanobacteria (initial stage of lacustrine calcite precipitation) and in crustacean cuticles.

View Article and Find Full Text PDF

We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO4 fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session54g2c3iejnd821gvtb4n8iqin4tiks7m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once