Publications by authors named "Nadeema Ayasha"

This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.

View Article and Find Full Text PDF

Three dimensional (3D) porous carbon materials are highly desirable for electrochemical applications owing to their high surface area and porosity. Uniformly distributed porosity in the 3D architecture of carbon support materials allows reactant molecules to access more electrochemically active centres and simultaneously facilitate removal of the product formed during electrochemical reactions. Herein, we have prepared a nitrogen-doped entangled graphene framework (NEGF), decorated with NiFe-LDH nanostructures by an solvothermal method followed by freeze-drying at high vacuum pressure and low temperature.

View Article and Find Full Text PDF

Herein, an interconnected α-Co(OH) structure with a network-like architecture was used as a bifunctional electrocatalyst for the overall water splitting reaction in alkaline medium. The complexing ability of glycine with a transition metal was exploited to form [Co(gly) ] dispersion at pH 10, which was used for the electrodeposition. High-resolution TEM, UV/Vis-diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy were used to confirm that the as-synthesized materials had an α-Co(OH) phase.

View Article and Find Full Text PDF

Substituting the energy-uphill water oxidation half-cell with readily oxidizable urea-rich urine, a ground-breaking bridge is constructed, combining the energy-efficient hydrogen generation and environmental protection. Hence, designing a robust multifunctional electrocatalyst is desirable for widespread implementation of this waste to fuel technology. In this context, here, we report a simple tuning of the electrocatalytically favorable characteristics of NiCo-layered double hydroxide by introducing [MoS] in its interlayer space.

View Article and Find Full Text PDF

Correction for 'Nanocrystalline Fe-FeO particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction' by Vishal M. Dhavale et al., Nanoscale, 2015, 7, 20117-20125.

View Article and Find Full Text PDF

Herein, we report a facile solvothermal process to synthesize an active electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium by anchoring nanosheets of a NiZn double hydroxide over nitrogen doped reduced graphene oxide after enriching the system with the γ-NiOOH phase. This catalyst possesses a thin, porous and open layered structure, which makes the system more efficient and accessible for a better electrochemical water oxidation reaction. Moreover, we experimentally demonstrated that incorporation of Zn via a single-step solvothermal method provides an easy approach to obtain plenty of exposed γ-NiOOH phases to make the system more viable for OER with a small overpotential of 290 mV at 10 mA cm and a Tafel slope of 44 mV per decade.

View Article and Find Full Text PDF

The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe(3+) ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr.

View Article and Find Full Text PDF