Introduction: The antiviral activity of different mutagens against single-stranded RNA viruses is well documented; however, their activity on the replication of double-stranded RNA viruses remains unexplored. This study aims to investigate the effect of different antivirals on the replication of a chicken embryo fibroblast-adapted Infectious Bursal Disease virus, FVSKG2. This study further explores the antiviral mechanism utilized by the most effective anti-IBDV agent.
View Article and Find Full Text PDFVaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA-polymerase of the virus.
View Article and Find Full Text PDFInfectious bursal disease virus is the causative agent of infectious bursal disease (Gumboro disease), a highly contagious immunosuppressive disease of chicken with a substantial economic impact on small- and large-scale poultry industries worldwide. Currently, live attenuated vaccines are widely used to control the disease in chickens despite their issues with safety (immunosuppression and bursal atrophy) and efficiency (breaking through the maternally-derived antibody titer). To overcome the drawbacks, the current study has, for the first time, attempted to construct a computational model of a multiepitope based vaccine candidate against infectious bursal disease virus, which has the potential to overcome the safety and protection issues found in the existing live-attenuated vaccines.
View Article and Find Full Text PDFSCARB1 belongs to class B of Scavenger receptors (SRs) that are known to be involved in binding and endocytosis of various pathogens. SRs have emerging role in regulating innate immunity and host-pathogen interactions by acting in co-ordination with Toll-like receptors.Query Little is known about the function of SCARB1 in milk-derived mammary epithelial cells (MECs).
View Article and Find Full Text PDFSalmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected.
View Article and Find Full Text PDFBackground: Long noncoding RNAs (lncRNAs) are now proven as essential regulatory elements, playing diverse roles in many biological processes including mammary gland development. However, little is known about their roles in the bovine lactation process.
Results: To identify and characterize the roles of lncRNAs in bovine lactation, high throughput RNA sequencing data from Jersey (high milk yield producer), and Kashmiri cattle (low milk yield producer) were utilized.
Despite the routine use of porcine reproductive and respiratory syndrome (PRRS)-modified live vaccines, serious concerns are currently being raised due to their quick reversion to virulence and limited cross-protection against divergent PRRS virus (PRRSV) strains circulating in the field. Therefore, a PRRS chimeric vaccine (JB1) was produced using a DNA-launched infectious clone by replacing open reading frames (ORFs) 3-6 with those from a mixture of two genetically different PRRSV2 strains (K07-2273 and K08-1054) and ORF1a with that from a mutation-resistant PRRSV strain (RVRp22) exhibiting an attenuated phenotype. To evaluate the safety and cross-protective efficacy of JB1 in a reproductive model, eight PRRS-negative pregnant sows were purchased and divided into four groups.
View Article and Find Full Text PDFCellulose nanofibers, which are troublesome to spin into fibers, can be easily fabricated by post-regeneration of its acetate-derived threads. Cellulose is a natural polymer; it enjoys better biocompatibility, cellular mimicking, and hydrophilic properties than its proportionate analog. Herein, we regenerated acetate-free nanofibers by alkaline de-acetylation of as-spun nanofibers.
View Article and Find Full Text PDFBackground: Exploration of the bioactive components of bovine milk has gained global interest due to their potential applications in human nutrition and health promotion. Despite advances in proteomics profiling, limited studies have been carried out to fully characterize the bovine milk proteome. This study explored the milk proteome of Jersey and Kashmiri cattle at day 90 of lactation using high-resolution mass spectrometry based quantitative proteomics nano-scale LC-MS/Q-TOF technique.
View Article and Find Full Text PDFSynthetic polymers, especially those with biocompatible and biodegradable characteristics, may offer effective alternatives for the treatment of severe wounds and burn injuries. Ideally, the scaffold material should induce as little pain as possible, enable quick healing, and direct the growth of defect-free epidermal cells. The best material with this multifunctionality, such as self-healing dressings, should be hydrophilic and have uninterrupted and direct contact with the damaged tissue.
View Article and Find Full Text PDFDiNap [()-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one], an analog of a natural product (the chalcone flavokawain), was synthesized and characterized in this study. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most challenging threat to the swine industry worldwide. Currently, commercially available vaccines are ineffective for controlling porcine reproductive and respiratory syndrome (PRRS) in pigs.
View Article and Find Full Text PDFSalmonella enterica serovar Typhimurium (S. Typhimurium) is a primary avian pathogen responsible for severe intestinal pathology in younger chickens and economic losses to poultry industry. Furthermore, S.
View Article and Find Full Text PDFBackground: Currently, an in vitro immunogenicity screening system for the immunological assessment of potential porcine reproductive and respiratory syndrome virus (PRRSV) vaccine candidates is highly desired. Thus, in the present study, two genetically divergent PRRSVs were characterized in vitro and in vivo to identify an in vitro system and immunological markers that predict the host immune response. Porcine alveolar macrophages (PAMs) and peripheral blood mononuclear cells (PBMCs) collected from PRRSV-negative pigs were used for in vitro immunological evaluation, and the response of these cells to VR2332c or JA142c were compared with those elicited in pigs challenged with the same viruses.
View Article and Find Full Text PDFFollicle-stimulating hormone-follicle-stimulating hormone receptor (FSH-FSHR) interaction is one of the most thoroughly studied signaling pathways primarily because of being implicated in sexual reproduction in mammals by way of maintaining gonadal function and sexual fertility. Despite material advances in understanding the role of point mutations, their mechanistic basis in FSH-FSHR signaling is still confined to mystically altered behavior of sTYS335 (sulfated tyrosine) yet lacking a substantial theory. To understand the structural basis of receptor modulation, we choose two behaviorally contradicting mutations, namely S128Y (activating) and D224Y (inactivating), found in FSH receptor responsible for ovarian hyperstimulation syndrome and ovarian dysgenesis, respectively.
View Article and Find Full Text PDFJ Family Med Prim Care
January 2018
Modern medicine is given overarching importance to tackle disease in the human body than environmental determinants. Although, most of the literature confirms that the determinants of disease are there in the environment. Yet in the modern times what is being emphasized is highly limited and reductionist approach of curing ailments in the human body only, which is one of the desired interventions but is full of other side effects and risks leading to iatrogenic reactions.
View Article and Find Full Text PDFBackground: Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) is a zoonotic pathogen responsible for severe intestinal pathology in young chickens. Natural resistance-associated macrophage protein (NRAMP) family has been shown to be associated with resistance to intracellular pathogens, including Salmonella Typhimurium. The role of NRAMP proteins in macrophage defence against microbial infection has been ascribed to changes in the metal-ion concentrations inside the bacteria-containing phagosomes.
View Article and Find Full Text PDFSince centuries, the traits for production and disease resistance are being targeted while improving the genetic merit of domestic animals, using conventional breeding programs such as inbreeding, outbreeding, or introduction of marker-assisted selection. The arrival of new scientific concepts, such as cloning and genome engineering, has added a new and promising research dimension to the existing animal breeding programs. Development of genome editing technologies such as transcription activator-like effector nuclease, zinc finger nuclease, and clustered regularly interspaced short palindromic repeats systems begun a fresh era of genome editing, through which any change in the genome, including specific DNA sequence or indels, can be made with unprecedented precision and specificity.
View Article and Find Full Text PDFOne of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains.
View Article and Find Full Text PDFUnlabelled: In a previous study, ribavirin-resistant porcine reproductive and respiratory syndrome virus (PRRSV) mutants (RVRp13 and RVRp22) were selected, and their resistance against random mutation was shown in cultured cells. In the present study, these ribavirin-resistant mutants were evaluated in terms of their genetic and phenotypic stability during three pig-to-pig passages in comparison with modified live virus (MLV) (Ingelvac PRRS MLV). Pigs challenged with RVRp22 had significantly lower (P< 0.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome (PRRS) is the most economically important disease to the swine industry, and effective prevention strategy for this disease is still required. Guanylate-binding protein 1 (GBP1) and myxovirus resistance protein 1 (Mx1) are two important proteins belonging to the GTPase superfamily that have been previously described to show antiviral effects. CD163 is considered the most important receptor for PRRSV attachment and internalization.
View Article and Find Full Text PDFO6-methylguanine-DNA methyltransferase (MGMT) is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion) back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits.
View Article and Find Full Text PDFBackground: Although modified live virus (MLV) vaccines are commonly used for porcine reproductive and respiratory syndrome virus (PRRSV) control, there have been safety concerns due to the quick reversion of MLV to virulence during replication in pigs. Previous studies have demonstrated that mutant viruses emerged from lethal mutagenesis driven by antiviral mutagens and that those viruses had higher genetic stability compared to their parental strains because they acquired resistance to random mutation. Thus, this strategy was explored to stabilize the PRRSV genome in the current study.
View Article and Find Full Text PDF