Inspired by compressed sensing techniques, a method for significantly enhancing the maximum allowable scan rate in quasi-distributed acoustic sensing (Q-DAS) is described and studied. Matching the scan parameters to the interrogated array facilitates orders of magnitude improvement in the scan rate and a corresponding increase in the maximum slew rate (SR) of differential phase variations which can be measured without ambiguity. The method is termed array matched interrogation (AMI).
View Article and Find Full Text PDFIn optoacoustic tomography, image reconstruction is often performed with incomplete or noisy data, leading to reconstruction errors. Significant improvement in reconstruction accuracy may be achieved in such cases by using nonlinear regularization schemes, such as total-variation minimization and -based sparsity-preserving schemes. In this paper, we introduce a new framework for optoacoustic image reconstruction based on adaptive anisotropic total-variation regularization, which is more capable of preserving complex boundaries than conventional total-variation regularization.
View Article and Find Full Text PDFThe ability to extract different bio-medical parameters from one single wristwatch device can be very applicable. The wearable device that is presented in this paper is based on two optical approaches. The first is the extraction and separation of remote vibration sources and the second is the rotation of linearly polarized light by certain materials exposed to magnetic fields.
View Article and Find Full Text PDF