The current trend of using nanotechnology products in all spheres of human life, including for crop improvement may have a possible impact on soil microorganisms which influence soil and plant health. Nanopore-based metagenomic study reported here used full-length 16S rRNA gene sequences to assess shifts in community composition of soil microorganisms when treated with silver, titanium dioxide and zinc oxide nanoparticles (S-NP, T-NP, Z-NP, respectively). Firmicutes and Proteobacteria were the two dominant phyla in this soil, and there were no significant differences ( < 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2020
The explosive growth in nanomaterial use will bring about their increased release into terrestrial ecosystems. Metal engineered nanomaterials (ENMs) that gain entry into these environments may alter the composition and activities of resident natural bacterial communities. To assess changes in community level physiological profiles (CLPP) of microbial communities in soils exposed to metal ENMs, Biolog EcoPlates were used in this exploratory comparative study.
View Article and Find Full Text PDFWe reported the preparation of antibacterial corn starch film (57% reduction in bacterial count) with enhanced tensile strength (69%) by incorporating immobilized bacteriocin. Whisker shaped crystalline nanocellulose (CNC, length 71.2 ± 20.
View Article and Find Full Text PDFEnterococcus faecium (E. faecium) isolated from Vigna mungo (Black gram) produced bacteriocin that inhibits both Gram positive and Gram negative bacteria and better heat stability (100 °C for 30 min). The bacteriocin was sensitive to protease treatment and most active in acidic pH.
View Article and Find Full Text PDFFenton's reagent that generates reactive hydroxyl radical species was evaluated for its effectiveness as a pretreatment agent on cotton cellulosic substrates to increase its susceptibility to cellulase enzyme. Response surface methodology was used to optimize four different process variables viz., time of reaction; substrate size and concentrations of Fe2+ and H2O2.
View Article and Find Full Text PDFA simple route for the synthesis of silver-protein (core-shell) nanoparticles using spent mushroom substrate (SMS) has been demonstrated in this work. SMS exhibits an organic surface that reduces silver ions and stabilizes the silver nanoparticles by a secreted protein. The silver nitrate solution incubated with SMS changed to a yellow color from 24 h onward, indicating the formation of silver nanoparticles.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2006
Extracellular synthesis of silver nanoparticles by a white rot fungus, Phaenerochaete chrysosporium is reported in this paper. Incubation of P. chrysosporium mycelium with silver nitrate solution produced silver nanoparticles in 24h.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2006
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2005
This article describes the analysis of autofluorescence of advanced glycation end products of hemoglobin (Hb-AGE). Formed as a result of slow, spontaneous and non-enzymatic glycation reactions, Hb-AGE possesses a characteristic autofluorescence at 308/345 nm (lambda(ex)/lambda(em)). Even in the presence of heme as a quenching molecule, the surface presence of the glycated adduct gave rise to autofluorescence with the quantum yield of 0.
View Article and Find Full Text PDFCurrent methods for measuring long-term glycemia in patients with diabetes are HbA(1c) and advanced glycation end products (AGEs), which are estimated by phenyl boronate affinity chromatography and competitive enzyme-linked immunosorbent assay, respectively. In this study, we hypothesize that the intrinsic fluorescence property of hemoglobin-AGE (Hb-AGE) may be a simple, accurate, and therefore better index for long-term glycemic status due to its highly specific nature and longer half-life. To establish this contention, in vitro and in vivo experiments were carried out.
View Article and Find Full Text PDF