Publications by authors named "Nadanaka S"

Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 μm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'.

View Article and Find Full Text PDF

Human serum amyloid A (SAA) is a precursor protein involved in AA amyloidosis. The N-terminal region of the SAA molecule is crucial for amyloid fibril formation, and therefore modifications in this region are considered to influence the pathogenesis of AA amyloidosis. In the present study, using the N-terminal peptide corresponding to the putative first helix region of the SAA molecule, we investigated the influences of N-terminal modifications on amyloid fibril formation.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a linear acidic polysaccharide, exhibits numerous biological activities that are dependent on sulfation patterns. CS oligosaccharides comprise repeating disaccharide units with different (hetero)-type sulfation patterns and are common in nature. We herein report the synthesis of the following biotinylated CS tetrasaccharides: CS-AD [βGalNAc4S(1-4)βGlcA(1-3)βGalNAc6S(1-4)βGlcA2S] and CS-DA [βGalNAc6S(1-4)βGlcA2S(1-3)βGalNAc4S(1-4)βGlcA], in a stereo-controlled manner.

View Article and Find Full Text PDF

Background And Purpose: Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in ageing-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analysing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis.

View Article and Find Full Text PDF

Extracellular and cell surface chondroitin sulfates (CSs) regulate cancer cell properties, including proliferation and invasion. Thus, it is necessary to understand the mechanisms underlying their roles in cancer. Although we have shown that CS has an inherent ability to enhance the invasive activity of the human triple-negative breast cancer cell line MDA-MB-231, its molecular mechanism remains elusive.

View Article and Find Full Text PDF

Basal-like breast cancer is characterized by an aggressive clinical outcome and presence of metastasis, for which effective therapies are unavailable. We have previously shown that chondroitin 4--sulfotransferase-1 (C4ST-1) controls the invasive properties of the basal-like breast cancer cell line BT-549 by inducing matrix metalloproteinase (MMP) expression through the N-cadherin/β-catenin pathway. Here we report that C4ST-1 controls the proliferation of BT-549 cells via the MMP-dependent cleavage of syndecan-1.

View Article and Find Full Text PDF

Objective: Chondroitin sulfate proteoglycans are the primary constituents of the macrophage glycosaminoglycan and extracellular microenvironment. To examine their potential role in atherogenesis, we investigated the biological importance of one of the chondroitin sulfate glycosaminoglycan biosynthesis gene, ChGn-2 (chondroitin sulfate -acetylgalactosaminyltransferase-2), in macrophage foam cell formation. Approach and Results: ChGn-2-deficient mice showed decreased and shortened glycosaminoglycans.

View Article and Find Full Text PDF

Chondroitin sulfates are implicated in epidermal biology, but functional significance of chondroitin sulfates remains unclear. Here, we report that chondroitin 6-sulfate is important for the maintenance of epidermal homeostasis. Mice deficient in chondroitin 6-O-sulfotransferase-1 (C6st-1), which is involved in biosynthesis of chondroitin 6-sulfate, exhibited keratinocyte hyperproliferation and impaired skin permeability barrier function.

View Article and Find Full Text PDF

Moyamoya disease (MMD) is characterized by progressive bilateral stenotic changes in the terminal portion of the internal carotid arteries. Although RNF213 was identified as a susceptibility gene for MMD, the exact pathogenesis remains unknown. Immunohistochemical analysis of autopsy specimens from a patient with MMD revealed marked accumulation of hyaluronan and chondroitin sulfate (CS) in the thickened intima of occlusive lesions of MMD.

View Article and Find Full Text PDF

The chondroitin sulfate (CS)-rich dense extracellular matrix surrounding neuron cell bodies and proximal dendrites in a mesh-like structure is called a perineuronal net (PNN). CS chains in PNNs control neuronal plasticity by binding to PNN effectors, semaphorin-3A (Sema3A) and orthodenticle homeobox 2. Sema3A recognizes CS-containing type-E disaccharide units (sulfated at O-4 and O-6 of -acetylgalactosamine).

View Article and Find Full Text PDF

Certain proteoglycans, consisting of a core protein and glycosaminoglycan (GAG) chains, are among the many types of biomolecules that can function as damage-associated molecular pattern molecules (DAMPs). We, therefore, hypothesized that the expression level and structural alteration of GAGs affect inflammation. We have previously reported that the effects on GAG biosynthesis caused by loss of the tumor suppressor gene exostosin-like 2 (Extl2) influence liver injury and regeneration processes.

View Article and Find Full Text PDF

The deficiency of α-Klotho in mice causes phenotypes resembling human age-associated disorders at 3-4 weeks after birth and shows short lifespans of ∼2 months. One of the crucial symptoms is pulmonary emphysema, although α-Klotho is not expressed in the lungs. α-Klotho secreted from the kidneys is probably involved in the pathology of emphysema because kidney-specific knockout mice exhibit emphysematous structural changes.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) and heparan sulfate (HS) are glycosaminoglycans that both bind the receptor-type protein tyrosine phosphatase PTPRσ, affecting axonal regeneration. CS inhibits axonal growth, while HS promotes it. Here, we have prepared a library of HS octasaccharides and, together with synthetic CS oligomers, we found that PTPRσ preferentially interacts with CS-E-a rare sulfation pattern in natural CS-and most HS oligomers bearing sulfate and sulfamate groups.

View Article and Find Full Text PDF

Chondroitin sulfate proteoglycan (CSPG) is a candidate regulator of embryonic neurogenesis. The aim of this study was to specify the functional significance of CSPG in adult hippocampal neurogenesis using male mice. Here, we showed that neural stem cells and neuronal progenitors in the dentate gyrus were covered in part by CSPG.

View Article and Find Full Text PDF

Aggrecan, a chondroitin sulfate (CS) proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs). Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells) late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity.

View Article and Find Full Text PDF

We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1-4)βGlcA(1-] and CS-DD [-3)βGalNAc6S(1-4)βGlcA2S(1-] which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies.

View Article and Find Full Text PDF

Background: Heparan sulfate proteoglycans are ubiquitously expressed on cell surfaces and in extracellular matrices, and are engaged in heparin-binding growth factor-related signal transduction. Thus, changes in the amounts, structures, and chain lengths of heparan sulfate have profound effects on aspects of cell growth controlled by heparin-binding growth factors such as FGF2. Exostosin glycosyltransferases (EXT1, EXT2, EXTL1, EXTL2, and EXTL3) control heparan sulfate biosynthesis, and the expression levels of their genes regulate the amounts, chain lengths, and sulfation patterns of heparan sulfate.

View Article and Find Full Text PDF

Tumor metastasis involves cancer cell invasion across basement membranes and interstitial tissues. The initial invasion step consists of adherence of the tumor cell to the extracellular matrix (ECM), and this binding transduces a variety of signals from the ECM to the tumor cell. Accordingly, it is critical to establish the mechanisms by which extracellular cues influence the intracellular activities that regulate tumor cell invasion.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) proteoglycans are abundant extracellular and cell surface molecules that consist of a protein core to which highly sulfated CS chains are covalently attached. The CS backbone is composed of repeating disaccharide units [-GlcA-GalNAc-], and during synthesis the CS chains acquire structural variability due to the action of sulfotransferases. Specific sulfation patterns are recognized by a large variety of proteins, including growth factors, morphogens, and extracellular matrix proteins, and these interactions regulate key events in development and normal physiology.

View Article and Find Full Text PDF
Article Synopsis
  • Serum amyloid A (SAA) is a protein that forms amyloid fibrils, and heparan sulfate (HS), a type of carbohydrate, is believed to be important in this process.
  • The study explored how different structural features of glycosaminoglycans (GAGs) affect the ability of SAA to form fibrils, finding that both the degree of sulfation and length of the sulfate domains significantly influence fibril formation.
  • Results showed that while SAA can aggregate in the presence of various GAGs, heparin and HS, which have higher sulfation levels, are particularly effective in promoting this aggregation.
View Article and Find Full Text PDF

The Golgi stress response is a mechanism by which, under conditions of insufficient Golgi function (Golgi stress), the transcription of Golgi-related genes is upregulated through an enhancer, the Golgi apparatus stress response element (GASE), in order to maintain homeostasis in the Golgi. The molecular mechanisms associated with GASE remain to be clarified. Here, we identified TFE3 as a GASE-binding transcription factor.

View Article and Find Full Text PDF