Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665).
View Article and Find Full Text PDFHuman liver contains various oxidative and conjugative enzymes that can convert nontoxic parent compounds to toxic metabolites or, conversely, toxic parent compounds to nontoxic metabolites. Unlike primary hepatocytes, which contain myriad drug-metabolizing enzymes (DMEs), but are difficult to culture and maintain physiological levels of DMEs, immortalized hepatic cell lines used in predictive toxicity assays are easy to culture, but lack the ability to metabolize compounds. To address this limitation and predict metabolism-induced hepatotoxicity in high-throughput, we developed an advanced miniaturized three-dimensional (3D) cell culture array (DataChip 2.
View Article and Find Full Text PDFBackground: Dacomitinib is a second-generation, irreversible EGFR tyrosine kinase inhibitor. We compared its efficacy and safety with that of the reversible EGFR tyrosine kinase inhibitor gefitinib in the first-line treatment of patients with advanced EGFR-mutation-positive non-small-cell lung cancer (NSCLC).
Methods: In this international, multicentre, randomised, open-label, phase 3 study (ARCHER 1050), we enrolled adults (aged ≥18 years or ≥20 years in Japan and South Korea) with newly diagnosed advanced NSCLC and one EGFR mutation (exon 19 deletion or Leu858Arg) at 71 academic medical centres and university hospitals in seven countries or special administrative regions.
Introduction: Interstitial lung disease (ILD) is a rare, but potentially serious, side effect associated with crizotinib, a tyrosine kinase inhibitor for anaplastic lymphoma kinase-positive (ALK) advanced non-small cell lung cancer. Our objective was to determine the incidence and nature of ILD associated with crizotinib in 4 PROFILE trials (ClinicalTrials.gov identifiers, NCT00585195, NCT00932451, NCT00932893, and NCT01154140).
View Article and Find Full Text PDFObjectives: Dacomitinib is a pan-HER inhibitor for advanced non-small-cell lung cancer (NSCLC). We explored the impact of a planned 4-day dacomitinib dose interruption on plasma exposure of dacomitinib and adverse events (AEs) of interest in Cohort III of the ARCHER 1042 study.
Materials And Methods: Patients, treatment-naïve for advanced NSCLC with EGFR activating mutations, received oral dacomitinib 45mg QD (once daily).
Many adverse drug reactions are caused by the cytochrome P450 (CYP)-dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-induced toxicity and to improve the safety of drug candidates, we developed a simple cell viability assay by combining a bioactivation system (human CYP3A4, CYP2D6 and CYP2C9) with Hep3B cells. We screened a series of drugs to explore structural motifs that may be responsible for CYP450-dependent activation caused by reactive metabolite formation, which highlighted specific liabilities regarding certain phenols and anilines.
View Article and Find Full Text PDFBackground: Palbociclib is an oral small-molecule inhibitor of cyclin-dependent kinases 4 and 6. In the randomized, open-label, phase II PALOMA-1/TRIO-18 trial, palbociclib in combination with letrozole improved progression-free survival (PFS) compared with letrozole alone as first-line treatment of estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced breast cancer (20.2 months versus 10.
View Article and Find Full Text PDFBackground: ARCHER 1042, a randomized phase II trial, explored the impact of prophylactic treatment on select dermatologic adverse events of interest (SDAEI), diarrhea, and mucositis associated with dacomitinib, an oral irreversible pan-human epidermal growth factor receptor (HER) inhibitor, in development for advanced non-small-cell lung cancer (NSCLC).
Patients And Methods: Patients with advanced NSCLC treated with dacomitinib were enrolled in two cohorts. Cohort I patients were randomized 1:1 to receive oral doxycycline or placebo (4 weeks).
Purpose: MITOsym, a new mathematical model of hepatocellular respiration and bioenergetics, has been developed in partnership with the DILIsym® model with the purpose of translating in vitro compound screening data into predictions of drug induced liver injury (DILI) risk for patients. The combined efforts of these two models should increase the efficiency of evaluating compounds in drug development in addition to enhancing patient care.
Methods: MITOsym includes the basic, essential biochemical pathways associated with hepatocellular respiration and bioenergetics, including mitochondrial oxidative phosphorylation, electron transport chain activity, mitochondrial membrane potential, and glycolysis; also included are dynamic feedback signals based on perturbation of these pathways.
Fatty acid beta oxidation is a major pathway of energy metabolism and occurs primarily in mitochondria. Drug-induced modulation of this pathway can cause adverse effects such as liver injury, or be beneficial for treating heart failure, type 2 diabetes, and obesity. Hence, in vitro assays that are able to identify compounds that affect fatty acid oxidation are of value for toxicity assessments, as well as for efficacy assessments.
View Article and Find Full Text PDFReactive oxygen species (ROS) are constantly produced in cells as a result of aerobic metabolism. When there is an excessive production of ROS and the cell's antioxidant defenses are overwhelmed, oxidative stress occurs. The superoxide anion is a type of ROS that is produced primarily in mitochondria but is also generated in other regions of the cell including peroxisomes, endoplasmic reticulum, plasma membrane, and cytosol.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disease. A key pathological feature of PD is Lewy bodies, of which the major protein component is α-synuclein (α-syn). Human genetic studies have shown that mutations (A53T, A30P, E46K) and multiplication of the α-syn gene are linked to familial PD.
View Article and Find Full Text PDFTo reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors.
View Article and Find Full Text PDFAddressing safety concerns such as drug-induced kidney injury (DIKI) early in the drug pharmaceutical development process ensures both patient safety and efficient clinical development. We describe a unique adjunct to standard safety assessment wherein the metabolite profile of treated animals is compared with the MetaMap Tox metabolomics database in order to predict the potential for a wide variety of adverse events, including DIKI. To examine this approach, a study of five compounds (phenytoin, cyclosporin A, doxorubicin, captopril, and lisinopril) was initiated by the Technology Evaluation Consortium under the auspices of the Drug Safety Executive Council (DSEC).
View Article and Find Full Text PDFDrug-induced mitochondrial dysfunction is known to contribute to late stage compound attrition. Recently, assays that identify mitochondrial dysfunction have been developed but many require expensive reagents, specialized equipment, or specialized expertise such as isolation of mitochondria. Here, we validate a new 384-well format cell-based dual parameter assay that uses commonly available detection methods to measure both mitochondrial toxicity and cytotoxicity.
View Article and Find Full Text PDFMitochondrial toxicity is a major reason for safety-related compound attrition and post-market drug withdrawals, highlighting the necessity for higher-throughput screens that can identify this mechanism of toxicity during the early stages of drug discovery. Here, we present the validation of a 384-well dual parameter plate-based assay capable of measuring oxygen consumption and extracellular acidification in intact cells simultaneously. The assay showed good reproducibility and robustness and is suitable for use with both suspension cells and adherent cells.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity.
View Article and Find Full Text PDFHigh-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis.
View Article and Find Full Text PDFExpert Opin Drug Metab Toxicol
February 2012
Introduction: Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases.
View Article and Find Full Text PDFDrug-induced mitochondrial toxicity is rapidly gaining recognition within the pharmaceutical industry as a contributor to compound attrition and post-market drug withdrawals. This article describes the mechanisms which lead to drug-induced mitochondrial toxicity, discusses high-throughput in vitro assays which are currently being used to identify mitochondrial dysfunction, and provides an overview on some of the drugs which impair mitochondrial function. While considerable progress has been made in the development of high-throughput assays to screen for mitochondrial impairment in vitro, much remains to be done.
View Article and Find Full Text PDFCompounds that impair the synthesis of either mitochondrial DNA (mtNDA) or mtDNA-encoded proteins reduce the levels of 13 proteins essential for oxidative phosphorylation, leading to a decrease in mitochondrial ATP production. Toxicity caused by these compounds is seldom identified in 24 to 72 hr cytotoxicity assays due to the low turnover rates of both mtDNA and mtDNA-encoded proteins. Here, we describe three high-throughput screening assays that detect compounds that affect mtDNA-encoded protein levels.
View Article and Find Full Text PDFDrug-induced mitochondrial dysfunction is a contributor to both late-stage compound attrition and post-market drug withdrawals. This review outlines the mechanisms which lead to drug-induced mitochondrial dysfunction and discusses the tremendous advances that have been made in the development of in vitro methods to identify mitochondrial impairment. Potentially useful animal models and in vivo methods to detect drug-induced mitochondrial impairment are also discussed.
View Article and Find Full Text PDFLysosomes are acidic organelles that are essential for the degradation of old organelles and engulfed microbes. Furthermore, lysosomes play a key role in cell death. Lipophilic or amphiphilic compounds with a basic moiety can become protonated and trapped within lysosomes, causing lysosomal dysfunction.
View Article and Find Full Text PDFDrug-induced mitochondrial toxicity is a contributing factor to many organ toxicities. The fact that some, but not all members of a particular drug class can induce mitochondrial dysfunction has necessitated the need for predictive screens within the drug development process. One of these screens is a cell viability assay done in two types of media, one containing high-glucose, the other, galactose.
View Article and Find Full Text PDFCompounds that interfere with the synthesis of either mitochondrial DNA or mtDNA-encoded proteins reduce the levels of 13 proteins essential for oxidative phosphorylation, leading to a decrease in mitochondrial adenosine triphosphate (ATP) production. Toxicity caused by these compounds is seldom identified in 24- to 72-h cytotoxicity assays due to the low turnover rates of both mtDNA and mtDNA-encoded proteins. To address this problem, the authors developed a 96-well format, high-content screening (HCS) assay that measures, in eukaryotic cells, the level of Complex IV-subunit 1, an mtDNA-encoded protein synthesized on mitochondrial ribosomes, and the level of Complex V-alpha subunit, a nuclear DNA-encoded protein synthesized on cytosolic ribosomes.
View Article and Find Full Text PDF