Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.
View Article and Find Full Text PDFThis insight article comments on: Ziegler C, Cochard, H, Stahl C, Bastien Gérard LF, Goret J, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies.
View Article and Find Full Text PDFRecent findings suggest that trees can survive high levels of drought-induced xylem embolism. In many cases, the embolism is irreversible and, therefore, can potentially affect post-drought recovery and tree function under recurring droughts. We examined the development of embolism in potted Aleppo pines, a common species in hot, dry Mediterranean habitats.
View Article and Find Full Text PDFThe cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c.
View Article and Find Full Text PDFForest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure.
View Article and Find Full Text PDFDuring drought, trees reduce water loss and hydraulic failure by closing their stomata, which also limits photosynthesis. Under severe drought stress, other acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible conductance loss. Here, we investigate two of them: the reversible impacts on the photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis, and the irreversible effect of premature leaf shedding.
View Article and Find Full Text PDFBiogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves.
View Article and Find Full Text PDFRising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C .
View Article and Find Full Text PDFClimate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements.
View Article and Find Full Text PDFDrought-induced tree mortality is expected to occur more frequently under predicted climate change. However, the extent of a possibly mitigating effect of simultaneously rising atmospheric [CO ] on stress thresholds leading to tree death is not fully understood, yet. Here, we studied the drought response, the time until critical stress thresholds were reached and mortality occurrence of Pinus halepensis (Miller).
View Article and Find Full Text PDFFaecal pollution modelling is a valuable tool to evaluate and improve water management strategies, especially in a context of water scarcity. The reduction dynamics of five faecal indicator organisms (E. coli, spores of sulphite-reducing clostridia, somatic coliphages, GA17 bacteriophages and a human-specific Bifidobacterium molecular marker) were assessed in an intermittent Mediterranean stream affected by a wastewater treatment plant (WWTP).
View Article and Find Full Text PDFModels are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change.
View Article and Find Full Text PDFSince the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change.
View Article and Find Full Text PDF