Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects.
View Article and Find Full Text PDFToxicol Appl Pharmacol
January 2023
Toxicol Appl Pharmacol
August 2022
Atrial fibrillation (AF) is an established risk factor ischemic stroke (IS) and is commonly encountered in patient hospitalized with acute myocardial infarction (AMI). Uncommonly, IS can occur as a complication resulting from percutaneous coronary intervention (PCI). There is limited real world data regarding AF-associated in-hospital IS (IH-IS) in patients admitted with AMI undergoing PCI.
View Article and Find Full Text PDFBackground: Cardiac lipoma and lipomatous hypertrophy of interatrial septum (LHIS) are very rare disorders with distinct pathological features. While cardiac lipoma is a well-circumscribed encapsulated tumor of mature adipocytes, LHIS is due to entrapment of fat cells in the interatrial septum during embryogenesis. Although a biopsy is the definitive diagnostic test, these disorders can be differentiated by a cardiac magnetic resonance imaging (MRI).
View Article and Find Full Text PDFBackground: The past decade has seen tremendous expansion in the production and application of engineered nanomaterials (ENMs). The unique properties that make ENMs useful in the marketplace also make their interactions with biological systems difficult to anticipate and critically important to explore. Currently, little is known about the health effects of human exposure to these materials.
View Article and Find Full Text PDFAccumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.
View Article and Find Full Text PDFIndian J Med Res
October 2008
Iron is an essential trace metal required by all living organisms and is toxic in excess. Nature has evolved a delicately balanced network to monitor iron entry, transport it to sites of need, and serve as a unique storage and recycling system, in the absence of an excretory system, to remove excess iron. Due to the unique nature of iron metabolism, iron homeostasis is achieved by integrated specialized mechanisms that operate at the cellular and organism level.
View Article and Find Full Text PDFAir pollution epidemiology has established a strong association between exposure to ambient particulate matter (PM) and cardiovascular outcomes. Experimental studies in both humans and laboratory animals support varied biological mechanisms including endothelial dysfunction as potentially a central step to the elicitation of cardiovascular events. We therefore hypothesized that relevant early molecular alterations on endothelial cells should be assessable in vitro upon acute exposure to PM components previously shown to be involved in health outcomes.
View Article and Find Full Text PDFThe Clean Air Act mandates the U.S. Environmental Protection Agency to periodically reassess existing and new science that underlie the regulation of major ambient pollutants -- particulate matter (PM) and tropospheric ozone being most notable.
View Article and Find Full Text PDFEnviron Health Perspect
December 2005
Ozone is an oxidant gas that can directly induce lung injury. Knowledge of the initial molecular events of the acute O3 response would be useful in developing biomarkers of exposure or response. Toward this goal, we exposed rats to toxic concentrations of O3 (2 and 5 ppm) for 2 hr and the molecular changes were assessed in lung tissue 2 hr postexposure using a rat cDNA expression array containing 588 characterized genes.
View Article and Find Full Text PDFJ Toxicol Environ Health A
September 2002
Comprehensive and systematic approaches are needed to understand the molecular basis for the health effects of particulate matter (PM) reported in epidemiological studies. Due to the complex nature of the pollutant and the altered physiological conditions of predisposed populations, it has been difficult to establish a direct cause and effect relationship. A high-throughput technology such as gene expression profiling may be useful in identifying molecular networks implicated in the health effects of PM and its causative constituents.
View Article and Find Full Text PDFPulmonary tissue injury and repair processes involve complex and coordinated cellular events such as necrosis, inflammation, cell growth/differentiation, apoptosis, and remodeling of extracellular matrix. These processes are regulated by expression of multiple mediator genes. Commercially available microarray blots and slides allow screening of hundreds to thousands of genes in a given tissue or cell preparation.
View Article and Find Full Text PDFBiochim Biophys Acta
December 1999
We report the nucleotide sequence of a novel cDNA and TNF-induced expression of the corresponding message (mRNA) in human fibroblast cells. This message is also expressed in certain human tumor cell lines and is over-expressed in a colon cancer cell line (HT-29). NIH3T3 cells transfected with the antisense construct of the 5'-region of this novel cDNA formed 20-fold more colonies in culture compared to cells transfected with a sense construct of the same region or the sense and the antisense constructs of the central region of this cDNA.
View Article and Find Full Text PDFSome cancer cells evade elimination by virtue of their insensitivity to agents that induce apoptosis. Conversely, the side effects of anticancer agents could be diminished if normal cells were more resistant. To further elucidate the factors that contribute to the susceptibility of a cell to apoptosis, these investigations were designed to identify proteins isolated from cells exposed to low concentrations of tumor necrosis factor (TNF) that, when incubated with normally TNF-sensitive cells, protect these cells from TNF-induced cytotoxicity.
View Article and Find Full Text PDFThe relative mutagenicity, nature of the mutations and the sequence specificity of mutations induced by the bifunctional alkylating agent, phosphoramide mustard (PM) and a monofunctional derivative, dechloroethyl phosphoramide mustard (dePM), were analyzed by the Ames test and by an in vitro shuttle vector mutagenesis assay. Both PM and dePM increased the mutation frequency above background in either assay. However, on an equimolar basis, dePM was less mutagenic than PM.
View Article and Find Full Text PDFA transformed cell line 7SA, obtained by transformation of C3H10T1/2 cells with irt vitro activated aflatoxin B-1 (AFB(1)), was used to investigate biochemical and molecular alterations associated with transformation by AFB(1). 7SA cells demonstrate an altered biochemical phenotype characterized by alterations in phase I and phase II enzymes in a manner that would allow these cells to survive in a hostile chemical environment. Investigations of the molecular basis of transformation revealed no mutations in codons 12/13 and 61 of ras genes (Ha-, Ki- and N-ras) and in exons 5, 6, 7 and 8 of p53 tumor suppressor gene.
View Article and Find Full Text PDFReductive activation of mitomycin C leads to its covalent binding to DNA, forming monoadducts and cross-links. The cytotoxicity of mitomycin C has been attributed to cross-link formation, whereas monoadducts are assumed to cause mutagenicity. We have developed a 32P-postlabeling technique to measure mitomycin C DNA adducts.
View Article and Find Full Text PDFThe mutagenicity of the antitumor drug dacarbazine (DTIC) is due to alkylation of cellular DNA by metabolites resulting from the metabolism of this drug by the mixed function oxidase system. In the present study, we used an in vitro shuttle vector assay to study the base and sequence specificity of mutagenesis by DTIC. The shuttle vector plasmid pSP189 was treated with DTIC (1-2.
View Article and Find Full Text PDF