Publications by authors named "Nada Majernikova"

Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis.

View Article and Find Full Text PDF

Ferroptosis is a form of regulated cell death that can be modulated by small molecules and has the potential for the development of therapeutics for oncology. Although excessive lipid peroxidation is the defining hallmark of ferroptosis, DNA damage may also play a significant role. In this study, a potential mechanistic role for MIF in homologous recombination (HR) DNA repair is identified.

View Article and Find Full Text PDF

Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca]) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨ), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death.

View Article and Find Full Text PDF

Ferroptosis is a type of oxidative cell death that can occur in neurodegenerative diseases and involves damage to mitochondria. Previous studies demonstrated that preventing mitochondrial dysfunction can rescue cells from ferroptotic cell death. However, the complexity of mitochondrial dysfunction and the timing of therapeutic interventions make it difficult to develop an effective treatment strategy against ferroptosis in neurodegeneration conditions.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common form of dementia, currently affects 40-50 million people worldwide. Despite the extensive research into amyloid β (Aβ) deposition and tau protein hyperphosphorylation (p-tau), an effective treatment to stop or slow down the progression of neurodegeneration is missing. Emerging evidence suggests that ferroptosis, an iron-dependent and lipid peroxidation-driven type of programmed cell death, contributes to neurodegeneration in AD.

View Article and Find Full Text PDF