Objective: Genomic duplications that lead to autism and other human diseases are interesting pathological lesions since the underlying mechanism almost certainly involves dosage sensitive genes. We aim to understand a novel genomic disorder with profound phenotypic consequences, most notably global developmental delay, autism, psychosis, and anorexia nervosa.
Methods: We evaluated the affected individuals, all maternally related, using childhood autism rating scale (CARS) and Vineland Adaptive scales, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) brain, electroencephalography (EEG), electromyography (EMG), muscle biopsy, high-resolution molecular karyotype arrays, Giemsa banding (G-banding) and fluorescent in situ hybridization (FISH) experiments, mitochondrial DNA (mtDNA) sequencing, X-chromosome inactivation study, global gene expression analysis on Epstein-Barr virus (EBV)-transformed lymphoblasts, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
Context: The MEN1 syndrome is associated with parathyroid, pancreatic and pituitary tumours and is caused by mutations in the MEN1 gene. In general, there is no genotype-phenotype correlation.
Objectives: To characterize a large family with MEN1 with aggressive tumour behaviour: malignant pancreatic endocrine tumours were present in five affected subjects and were the presenting features in three subjects.