Publications by authors named "Nacira Tabti"

Targeted differentiation of pluripotent stem (PS) cells into myotubes enables in vitro disease modeling of skeletal muscle diseases. Although various protocols achieve myogenic differentiation in vitro, resulting myotubes typically display an embryonic identity. This is a major hurdle for accurately recapitulating disease phenotypes in vitro, as disease commonly manifests at later stages of development.

View Article and Find Full Text PDF

The electrodiagnostic tests performed in a patient with suspected muscle disease should provide reliable answers to the addressed questions: (1) differentiate a myopathic disorder from a neuropathic one and (2) precise the nature and cause of the myopathy. Answer to the first question mainly requires needle electromyography (EMG) of 4-6 muscles. Recordings may include extraction and measurements of motor unit potentials (MUPs).

View Article and Find Full Text PDF

Background: Human induced pluripotent stem cells-derived myogenic progenitors develop functional and ultrastructural features typical of skeletal muscle when differentiated in culture. Besides disease-modeling, such a system can be used to clarify basic aspects of human skeletal muscle development. In the present study, we focus on the development of the excitation-contraction (E-C) coupling, a process that is essential both in muscle physiology and as a tool to differentiate between the skeletal and cardiac muscle.

View Article and Find Full Text PDF

Progress has recently been made toward the production of human skeletal muscle cells from induced pluripotent stem (iPS) cells. However, the functional and ultrastructural characterization, which is crucial for disease modeling and drug discovery, remains to be documented. We show, for the first time to our knowledge, that the electrophysiological properties of human iPS-derived skeletal myocytes are strictly similar to those of their embryonic stem (ES) cell counterparts, and both are typical of aneural mammalian skeletal muscle.

View Article and Find Full Text PDF

Muscle channelopathies caused by mutations in the SCN4A gene that encodes the muscle sodium channel are transmitted by autosomal-dominant inheritance. We report herein the first cases of homozygous patients for sodium channel mutations responsible for paramyotonia congenita (I1393T) or hypokalemic periodic paralysis (R1132Q). A parallel was drawn between this unprecedented situation and that of myotonia congenita by including patients homozygous or heterozygous for the CLCN1 I556N channel mutation, which is known for incomplete dominance and penetrance.

View Article and Find Full Text PDF

The Q270K mutation of the skeletal muscle Na(+) channel alpha subunit (Nav1.4) causes atypical paramyotonia with a striking sensitivity to cold. Attacks of paralysis and a drop in the compound muscle action potential (CMAP) are exclusively observed at cold.

View Article and Find Full Text PDF

Rare diseases have attracted little attention in the past from physicians and researchers. The situation has recently changed for several reasons. First, patient associations have successfully advocated their cause to institutions and governments.

View Article and Find Full Text PDF

Hypokalemic periodic paralysis type 2 (hypoPP2) is an inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the alpha subunit of the skeletal muscle Na+ channel (Nav1.4). All hypoPP2 mutations reported so far target an arginine residue of the voltage sensor S4 of domain II (R672/G/H/S).

View Article and Find Full Text PDF

Objective: Myotonias are inherited disorders of the skeletal muscle excitability. Nondystrophic forms are caused by mutations in genes coding for the muscle chloride or sodium channel. Myotonia is either relieved or worsened by repeated exercise and can merge into flaccid weakness during exposure to cold, according to causal mutations.

View Article and Find Full Text PDF

Missense mutations in the human skeletal muscle Na+ channel alpha subunit (hSkM1) are responsible for a number of muscle excitability disorders. Among them, paramyotonia congenita (PC) is characterized by episodes of muscle stiffness induced by cold and aggravated by exercise. We have identified a new PC-associated mutation, which substitutes aspartic acid for a conserved alanine in the S4-S5 linker of domain III (A1152D).

View Article and Find Full Text PDF

Myotonic syndromes and periodic paralyses are rare disorders of skeletal muscle characterized mainly by muscle stiffness or episodic attacks of weakness. Familial forms are caused by mutations in genes coding for skeletal muscle voltage-gated ion channels. Exercise is known to trigger, aggravate, or relieve the symptoms.

View Article and Find Full Text PDF

Paramyotonia congenita (PC) is a dominantly inherited skeletal muscle disorder caused by missense mutations in the SCN4A gene encoding the pore-forming alpha subunit (hSkM1) of the skeletal muscle Na+ channel. Muscle stiffness is the predominant clinical symptom. It is usually induced by exposure to cold and is aggravated by exercise.

View Article and Find Full Text PDF