Xenotransplantation could be an inexhaustible source of organs and change the life of end-stage kidney disease patients with reduction of morbidity and mortality. Through genetic engineering it is now possible to reduce the risk of hyperacute and acute graft rejection and improve the overall immune compatibility between two different species. Some experiments have already brought promising perspectives.
View Article and Find Full Text PDFObjectives: To evaluate the association between fat infiltration in skeletal muscles (myosteatosis) and hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods: In a cross-sectional cohort of 72 histologically proven NAFLD patients (n = 38 with non-alcoholic steatohepatitis; NASH), among which 20 had HCC diagnosed on biopsy, we used proton density fat fraction (PDFF) at MRI to evaluate myosteatosis in skeletal muscles (mean fat fraction and first order radiomic-based pattern) at the third lumbar level, namely in erector spinae (ES), quadratus lumborum (QL), psoas, oblique, and rectus muscles.
Results: PDFF was 70% higher in patients with HCC when compared to those without HCC (9.
Background Body composition data have been limited to adults with disease or older age. The prognostic impact in otherwise asymptomatic adults is unclear. Purpose To use artificial intelligence-based body composition metrics from routine abdominal CT scans in asymptomatic adults to clarify the association between obesity, liver steatosis, myopenia, and myosteatosis and the risk of mortality.
View Article and Find Full Text PDFTo date, a biopsy is mandatory to evaluate parenchymal inflammation in the liver. Here, we evaluated whether molecular imaging of vascular cell adhesion molecule-1 (VCAM-1) could be used as an alternative non-invasive tool to detect liver inflammation in the setting of chronic liver disease. To do so, we radiolabeled anti-VCAM-1 nanobody (Tc-cAbVCAM1-5) and used single-photon emission computed tomography (SPECT) to quantify liver uptake in preclinical models of non-alcoholic fatty liver disease (NAFLD) with various degree of liver inflammation: wild-type mice fed a normal or high-fat diet (HFD), FOZ fed a HFD and C57BL6/J fed a choline-deficient or -supplemented HFD.
View Article and Find Full Text PDFBackground: Obesity among older adults has increased tremendously. Obesity accelerates ageing and predisposes to age-related conditions and diseases, such as loss of endurance capacity, insulin resistance and features of the metabolic syndrome. Namely, ectopic lipids play a key role in the development of nonalcoholic fatty liver disease (NAFLD) and myosteatosis, two severe burdens of ageing and metabolic diseases.
View Article and Find Full Text PDFBackground: Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in the world. Progression toward non-alcoholic steatohepatitis (NASH) is associated with alterations of skeletal muscle. One plausible mechanism for altered muscle compartment in liver disease is changes in ammonia metabolism.
View Article and Find Full Text PDFBackground & Aims: Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition.
View Article and Find Full Text PDFBackground & Aims: Retrospective cross-sectional studies linked sarcopenia and myosteatosis with metabolic dysfunction-associated fatty liver disease (MAFLD). Here, we wanted to clarify the dynamic relationship between sarcopenia, myosteatosis, and MAFLD.
Methods: A cohort of 48 obese patients was randomised for a dietary intervention consisting of 16 g/day of inulin (prebiotic) or maltodextrin (placebo) supplementation.
Background & Aims: Studies exploring the relationship between muscle fat content and non-alcoholic fatty liver disease (NAFLD) are scarce. Herein, we aimed to evaluate the association of muscle mass and fatty infiltration with biopsy-assessed NAFLD in patients with obesity.
Methods: At inclusion (n = 184) and 12 months after a dietary intervention (n = 15) or bariatric surgery (n = 24), we evaluated NAFLD by liver biopsy, and skeletal muscle mass index (SMI) by CT (CT-SMI) or bioelectrical impedance analysis (BIA-SMI).
Background: Non-alcoholic fatty liver (NAFL) disease (NAFLD) is the most common chronic liver disease in the world. While most subjects have 'inert' NAFL, a subset will progress to non-alcoholic steatohepatitis (NASH) and its life-threatening complications. A substantial body of literature supports that a low muscle mass, low strength, and/or muscle fatty infiltration (myosteatosis) are associated with NAFLD severity.
View Article and Find Full Text PDFDurum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year.
View Article and Find Full Text PDFFat accumulation in skeletal muscle was recently established as a major risk factor for cardiovascular disease (CVD) in the general population, but its relevance for patients with kidney failure is unknown. Here we examined the potential association between muscle radiation attenuation (MRA), a non-invasive indicator of fat deposits in muscle, and cardiovascular events in patients with kidney failure treated with peritoneal dialysis (PD) and investigated dynamic changes and determinants of MRA in this population. We retrospectively assessed MRA on computed tomography images collected yearly in 101 incident patients with kidney failure starting PD between January 2006 and December 2015.
View Article and Find Full Text PDFPathologists use a semiquantitative scoring system (NAS or SAF score) to facilitate the reporting of disease severity and evolution. Similar scores are applied for the same purposes in rodents. Histological scores have inherent inter- and intra-observer variability and yield discrete and not continuous values.
View Article and Find Full Text PDFSkeletal muscle is a tissue that represents 30-40% of total body mass in healthy humans and contains up to 75% of total body proteins. It is thus the largest organ in non-obese subjects. The past few years have seen increasing awareness of the prognostic value of appreciating changes in skeletal muscle compartment in various chronic diseases.
View Article and Find Full Text PDFAim: This study aims to determine which anthropometric (body mass index (BMI), waist-hip-ratio (WHR) and waist-to-height ratio (WHtR)) and radiological (visceral fat area (VFA) measured by CT scan) measurements of adiposity correlated better with postoperative outcome of colorectal cancer (CRC) surgery. We also assessed which of these measurements best predicted overall survival (OS) and disease-free survival (DFS).
Methods: Data from 90 consecutive Caucasian CRC patients who underwent surgery for colorectal cancer between 2010 and 2011 with a median follow-up of 53.
J Cachexia Sarcopenia Muscle
October 2017
Background: Several experimental evidences pinpoint the possible role of Activin A (ActA) as a driver of cancer cachexia. Supporting this hypothesis, we showed recently that human cancer cachexia is associated with high ActA levels. Moreover, ActA levels were correlated with body weight loss and skeletal muscle density, two prognostic factors in cancer patients.
View Article and Find Full Text PDFContext: Cachexia is a multifactorial syndrome, characterized by the loss of skeletal muscle mass and not fully reversible by nutritional support. Recent animal observations suggest that production of Activin A (ActA) and Myostatin (Mstn) by some tumors might contribute to cancer cachexia.
Objective: Our goal was to investigate the role of ActA and Mstn in the development of the human cancer cachexia.
To identify potential and useful markers able to discriminate promising lines of durum wheat (Triticum turgidum L. var durum) tolerant to salt and drought stresses, nucleotide sequences of Dehydration-Responsive-Element Binding Factor (DREB) genes were used to design primers probed with High Resolution Melting technology for the identification of allelic variants. DREB1, DREB2, DREB3, DREB4 and DREB5 conserved regions corresponding to EREBP/AP2 domain and containing the conserved core sequence (5'-TACCGACAT-3'), the protein site directly involved in DNA recognition, were analyzed.
View Article and Find Full Text PDFDurum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought.
View Article and Find Full Text PDF