Publications by authors named "Nacer Badi"

This study reports a novel CuSe-TiO-GO composite, synthesized by a facile hydrothermal method at a controlled temperature, and investigates its electrochemical performance for supercapacitors (SCs) and photocatalytic behavior for degrading methylene blue (MB) dye. The compositional phase structure and chemical bond interaction were thoroughly investigated. The as-fabricated pristine, binary, and ternary composites underwent comprehensive characterization employing spectroscopic techniques and electrochemical analysis.

View Article and Find Full Text PDF

In hot dry regions, photovoltaic modules are exposed to excessive temperatures, which leads to a drop in performance and the risk of overheating. The present numerical study aims to evaluate the natural air cooling of PV modules by an inclined chimney mounted at the back. The basic equations were solved using the finite volume method.

View Article and Find Full Text PDF

Expression of concern for 'High performance flexible supercapacitors based on secondary doped PEDOT-PSS-graphene nanocomposite films for large area solid state devices' by Syed Khasim , , 2020, , 10526-10539, https://doi.org/10.1039/D0RA01116A.

View Article and Find Full Text PDF

The nonlinear effects of thermal radiation on the free convection flow of certain nanofluids along a heated wall are studied numerically using an original finite-difference method. Nanofluids are used to improve the performance of flat and curved integrated photovoltaic modules. The partial differential equations governing the flow are difficult to solve due to the strong non-linearity of the radiative term.

View Article and Find Full Text PDF

Porous TiO-doped polyaniline and polyaniline nanocomposite fibers prepared by the in situ polymerization technique using anionic surfactant in an ice bath were studied. The prepared nanocomposites were characterized by FTIR spectroscopy and XRD patterns for structural analysis. The surface morphology of the polyaniline and its nanocomposites was examined using SEM images.

View Article and Find Full Text PDF

Polyaniline fibers were prepared in the presence of anionic surfactant in an ice medium to nucleate in one dimension and were compared to bulk polyaniline prepared at an optimum temperature. Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) were used to investigate the structural analysis of the prepared samples. A conductivity study reveals that polyaniline fibers have high conductivity compared to bulk polyaniline.

View Article and Find Full Text PDF

Expression of concern for 'Design and development of highly sensitive PEDOT-PSS/AuNP hybrid nanocomposite-based sensor towards room temperature detection of greenhouse methane gas at ppb level' by Syed Khasim RSC , 2021, , 15017-15029. DOI https://doi.org/10.

View Article and Find Full Text PDF

The efficiency of solar panels decreases as the temperature increases and heat dissipation becomes a serious problem in hot environments such as the Arabian desert. This paper investigates the use of a phase change material (PCM-OM37P) to maintain panel temperatures close to ambient. The enhancement of the GCL-P6/60265W solar panel efficiency was demonstrated at the University of Tabuk Renewable Energy and Energy Efficiency Center (REEEC).

View Article and Find Full Text PDF

This paper aimed to investigate the temperature effect on photovoltaic (PV) cell parameters. The PV cell parameters such as series and parallel resistances, diode ideality factor, and diode saturation current, are not considered in the reported stepwise modeling. The present work aims to improve available models used in the modeling and simulation of PV modules to support the researcher and power project developer.

View Article and Find Full Text PDF

In this work, solid flexible polymer blend electrolytes (PBE) composed of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) with different amounts of sodium thiocyanate (NaSCN) salt mixed in double-distilled water (solvent) are prepared via solution casting method. The obtained films are characterized using several techniques. The study of the surface morphology of the polymer blend salt complex films via the POM technique reveals the presence of amorphous regions due to the NaSCN effect.

View Article and Find Full Text PDF

In recent decades, the enhancement of the properties of electrolytes and electrodes resulted in the development of efficient electrochemical energy storage devices. We herein reported the impact of the different polymer electrolytes in terms of physicochemical, thermal, electrical, and mechanical properties of lithium-ion batteries (LIBs). Since LIBs use many groups of electrolytes, such as liquid electrolytes, quasi-solid electrolytes, and solid electrolytes, the efficiency of the full device relies on the type of electrolyte used.

View Article and Find Full Text PDF

Herein, we present fabrication of a novel methane sensor based on poly (3,4-ethylenedioxythiophene:poly (styrene sulfonic acid)) (p-PEDOT-PSS) and gold nanoparticles (AuNPs) treated with dimethyl sulfoxide (DMSO) and Zonyl using a spin coating technique. The nanocomposite films were further post treated with HSO to improve the charge transport mechanism. The structural and morphological features of the composites were analyzed through scanning electronic microscopy, transmission electron microscopy, Fourier transform infra-red spectroscopy, UV-Vis spectroscopy and thermogravimetric analysis.

View Article and Find Full Text PDF

In this work, we propose the development of high performance and flexible supercapacitors using reduced graphene oxide (rGO) incorporated poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT-PSS) nanocomposites by secondary doping. The structural and morphological features of the composite film were analyzed in detail using SEM, AFM, FTIR, XPS and TGA. Secondary doping of ethylene glycol (EG) assisted by rGO incorporation significantly enhances the room temperature conductivity of PEDOT-PSS films from 3 S cm to nearly 1225 S cm for a 10 wt% composite.

View Article and Find Full Text PDF

The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential.

View Article and Find Full Text PDF

In this work, a series of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) with several weight percentages (0.1, 0.4, 0.

View Article and Find Full Text PDF