Publications by authors named "Nabiollah Mansouri"

The most significant environmental issue in many nations across the world is industrial wastewater contamination with formaldehyde (a priority pollutant). Any natural water that has had industrial effluent discharged into with formaldehyde concentrations between 100 and 1000 mg/l is deemed toxic to humans. This is an applied analytical research project aimed at examining formaldehyde removal from urban drinking water using a batch electro-photocatalytic (EPC) reactor that uses ultraviolet-A (UV-A) lamp dynode and immobilized ZnO NPs on a zinc sheet-copper electrode.

View Article and Find Full Text PDF

Long-term exposure to Volatile Organic Compounds (VOCs) is a health risk for citizens. In this study, the cumulative health risk of exposure to VOCs in Tehran was assessed by investigating the concentration of these pollutants in ambient air in a five-year period. Health risk assessment was calculated by the quantitative method and the carcinogenic risk level was determined using the lifetime carcinogenic risk (LCR) method.

View Article and Find Full Text PDF

An advanced synthesis based on the phenylalanine (Phe) and task-specific ionic liquid (TSIL) functionalized on multi-walled carbon nanotubes (Phe/TSIL@MWCNTs), was used to extract benzene, ethylbenzene, toluene, and xylene (BTEX) from cow's milk, powdered milk, and farm water samples. The BTEX was efficiently extracted by ultrasound-assisted dispersive homogenized-micro-solid phase extraction (USA-DH-µ-SPE) between 95.1% and 103.

View Article and Find Full Text PDF

A new functionalized Nano graphene with aminopropyl trimethoxysilane-phenanthrene-4-carbaldehyde (NGO@APTMS-PNTCA) as a novel adsorbent was used to extract toluene from water samples by the ultrasound-assisted dispersive solid-phase microextraction procedure (USA-D-SPME). So, 50 mg of NGO@APTMS-PNTCA adsorbent was added to water samples and sonicated for 20 min. After toluene extraction, the NGO@APTMS-PNTCA adsorbent separated from the liquid phase with a Whatman membrane filter (200 nm).

View Article and Find Full Text PDF

Unlabelled: This study is devoted to optimization synthesis conditions of the N, S co-doped porous graphene via a single step thermal chemical activation process from agricultural wastes such as cabbage waste. To this end, the response surface method (RSM) was considered, and the synthesis parameters were varied in specific ranges. By doing so, the optimum conditions in terms of the best performance in mercury removal was determined which was characterized by TEM, SEM, BET, XRD, XPS, and FTIR techniques.

View Article and Find Full Text PDF

As well known, mercury is a toxic trace element due to its bioaccumulation and volatility which results in severe effects in health of ecosystems and humans' life. Herein, for the first time, the synthesis of a N and S dual-doped waste-derived graphene-like nanoporous carbon via a facile and single-step route is presented and its capability in mercury vapor removal from gas streams is investigated. To prepare a modified adsorbent, thiourea was utilized as the doping agent to induce nitrogen and sulfur dopants into the nanoporous carbon structure derived from pyrolysis of cabbage (Capitat.

View Article and Find Full Text PDF

Iran as a developing country is experiencing the industrialization process quickly and is thus exposed to different industrial hazards mostly derived from chemicals. In the light of this problem, this study estimated the human vulnerability in chemical accidents using the software simulation of accidental chlorine gas releases. A mixed method (qualitative and quantitative) study carried out in 4 phases during 2015-2017 in Ray County, Tehran Province.

View Article and Find Full Text PDF

Background: Occupational chemical accidents have increased in recent years in the Islamic Republic of Iran. In June and August 2015, three large explosions occurred at chemical warehouses in Rey, Tehran Province, and toxic vapours were released.

Aims: This study reviewed the three chemical accidents and assessed the extent to which the requirements for chemical safety and preparedness for chemical incidents under the International Health Regulations (IHR) are in place, and implemented at local and national levels in the Islamic Republic of Iran.

View Article and Find Full Text PDF

CALINE3 model predicts the dispersion of pollutants released from roadways in the receptor places at a certain radius from the source. This model was used to evaluate the dispersion of particulate matter < 2.5 µm (PM) and carbon monoxide (CO) emitted from Yadegar-e-Emam Expressway (YEE) as one of the most congested highways in Tehran.

View Article and Find Full Text PDF

Background And Aim: Chemical accidents cause significant danger for residents living close to chemical facilities. For this reason, this study assessed the impacts of a simulated chemical accident on surrounding residents in the city of Ray, Iran.

Methods: In this scenario-based case study in 2015, the Areal Location of Hazardous Atmospheres (ALOHA) model was applied to simulate a toxic chemical release from a chlorine warehouse in Shourabad, Ray, Iran.

View Article and Find Full Text PDF

Sustainability comprises three pillars of social, environmental, and economic aspects. Petrochemical industry has a great inter-related complex impact on social and economic development of societies and adverse impact on almost all environmental aspects and resource depletion in many countries, which make sustainability a crucial issue for petrochemical industries. This study was conducted to propose components of sustainability considerations in management of petrochemical industries.

View Article and Find Full Text PDF

Introduction: Industrial chemical accidents have been increased in developing countries. Assessing the human vulnerability in the residents of industrial areas is necessary for reducing the injuries and causalities of chemical hazards. The aim of this study was to explore the key indicators for the assessment of human vulnerability in the residents living near chemical installations.

View Article and Find Full Text PDF

Background: The positive matrix factorization is a powerful environmental analysis technique which has been successfully utilized to assess air-born particulate matter source contribution. The new version of this model (PMF5) has two additional estimation error methods and some other useful advantages compared to the previous versions. In the present study, the capability of PMF5 for identification and contribution of small size particle source to the ambient particulate matter was evaluated.

View Article and Find Full Text PDF