The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients.
View Article and Find Full Text PDFObesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease.
View Article and Find Full Text PDFSolid-state lithium batteries are generally considered as the next-generation battery technology that benefits from inherent nonflammable solid electrolytes and safe harnessing of high-capacity lithium metal. Among various solid-electrolyte candidates, cubic garnet-type LiLaZrO ceramics hold superiority due to their high ionic conductivity (10 to 10 S cm) and good chemical stability against lithium metal. However, practical deployment of solid-state batteries based on such garnet-type materials has been constrained by poor interfacing between lithium and garnet that displays high impedance and uneven current distribution.
View Article and Find Full Text PDFPerovskites have been unprecedented with a relatively sharp rise in power conversion efficiency in the last decade. However, the polycrystalline nature of the perovskite film makes it susceptible to surface and grain boundary defects, which significantly impedes its potential performance. Passivation of these defects has been an effective approach to further improve the photovoltaic performance of the perovskite solar cells.
View Article and Find Full Text PDF