Publications by authors named "Nabilah Afiqah Mohd Radzuan"

Article Synopsis
  • Two-component micro-powder injection moulding (2C-μPIM) is being explored as a cost-effective method to create bi-material micro-components using stainless steel 316L and zirconia, though it encounters challenges like cracks at material interfaces during sintering.
  • This study focused on how incorporating SS316L nanoparticles into bimodal SS316L powders affects the sintering process and quality of the fabricated bi-materials.
  • Results showed that increasing the nanoparticle content improved the critical powder loading, relative density, and hardness of the materials, with a notable reduction in interface cracks, achieving a completely crack-free interface at 45 vol.% nanoparticle content.
View Article and Find Full Text PDF

The fabrication of bi-material micro-components via two-component micro-powder injection moulding (2C-µPIM) from 3 mol% yttria-stabilised zirconia (3YSZ) and micro/nano bimodal stainless steel 316L (SS 316L) powders has received insufficient attention. Apart from this, retaining the bonding between ceramic and metal at different processing stages of 2C-µPIM is challenging. This study investigated the solvent and thermal debinding mechanisms of green bi-material micro-parts of 3YSZ and bimodal SS 316L without collapsing the ceramic/metal joining.

View Article and Find Full Text PDF

The micro-scale joining of two different materials using two-component micro-powder injection molding (2C-µPIM) is an intriguing technique. The formation of defects in bi-materials at different processing stages makes this technique challenging. This study presents the fabrication of defect-free bi-material micro-parts containing hydroxyapatite (HA) and 3 mol% yttria-stabilized zirconia (3YSZ) via 2C-µPIM.

View Article and Find Full Text PDF

The production of fabricated filaments for fused deposited modelling printing is critical, especially when higher loading filler (>20 wt.%) is involved. At higher loadings, printed samples tend to experience delamination, poor adhesion or even warping, causing their mechanical performance to deteriorate considerably.

View Article and Find Full Text PDF

The use of kenaf fiber as a reinforcement material for polymer composites is gaining popularity, especially in the production of automotive components. The main objective of this current work is to relate the effect of alkali treatment on the single fiber itself and the composite material simultaneously. The effect of temperature condition during mechanical testing is also investigated.

View Article and Find Full Text PDF

Automotive parts, including dashboards and trunk covers, are now fabricated through a compression-molding process in order to produce lightweight products and optimize fuel consumption. However, their mechanical strength is not compromised to avoid safety issues. Therefore, this study investigates kenaf-fiber-reinforced polypropylene composites using a simple combing approach to unidirectionally align kenaf fibers at 0°.

View Article and Find Full Text PDF

In this study, a biodegradable, cheap and durable recycled high-density polyethylene (rHDPE) polymer reinforced with rice husk (RH) fibre was fabricated into a foam structure through several processes, including extrusion, internal mixing and hot pressing. The effect of filler loading on the properties of the foam and the influence of RH surface treatments on the filler-matrix adhesion and mechanical properties of the composite foam were investigated. The morphological examination shows that 50 wt.

View Article and Find Full Text PDF

To date, the mechanical performance of kenaf composites is still unsatisfied in term of its mechanical performance. Therefore, research focuses on kenaf composites fabrication through the selection of polymer resin, including epoxy, polypropylene, and polylactic acid. The incorporated kenaf fibre at 10 wt % to 40 wt % loadings was conducted using injection and a compression moulding process.

View Article and Find Full Text PDF

Polymer composites have been extensively fabricated given that they are well-fitted for a variety of applications, especially concerning their mechanical properties. However, inadequate outcomes, mainly regarding their electrical performance, have limited their significant potential. Hence, this study proposed the use of multiple fillers, with different geometries, in order to improve the electrical conductivity of a polymer composite.

View Article and Find Full Text PDF

Die configurations, filler orientations, electrical conductivity, and mechanical properties of polypropylene reinforced milled carbon fibers were studied as functions of their manufacturing processes. Series of manufacturing processes often deteriorate the material properties, hence, finding a suitable process aid is key to improving the electrical and mechanical properties of composite materials. Compared with the conventional manufacturing process, extrusion is a key process in the production of a highly conductive composite.

View Article and Find Full Text PDF