Introduction: Intracortical Brain-computer interfaces (iBCIs) are a promising technology to restore function after stroke. It remains unclear whether iBCIs will be able to use the signals available in the neocortex overlying stroke affecting the underlying white matter and basal ganglia.
Methods: Here, we decoded both local field potentials (LFPs) and spikes recorded from intracortical electrode arrays in a person with chronic cerebral subcortical stroke performing various tasks with his paretic hand, with and without a powered orthosis.
Background: Active upper extremity (UE) assistive devices have the potential to restore independent functional movement in individuals with UE impairment due to neuromuscular diseases or injury-induced chronic weakness. Academically fabricated UE assistive devices are not usually optimized for activities of daily living (ADLs), whereas commercially available alternatives tend to lack flexibility in control and activation methods. Both options are typically difficult to don and doff and may be uncomfortable for extensive daily use due to their lack of personalization.
View Article and Find Full Text PDF