Publications by authors named "Nabila Cocordano"

Isoprenyl cysteine carboxyl methyltransferase (ICMT) catalyzes the last step of the prenylation pathway. Previously, we found that high ICMT levels enhance tumorigenesis in vivo and that its expression is repressed by the p53 tumor suppressor. Based on evidence suggesting that some ICMT substrates affect invasive traits, we wondered if this enzyme may promote metastasis.

View Article and Find Full Text PDF

Alteration of metabolism in cancer cells is a central aspect of the mechanisms that sustain aggressive traits. Aldo-keto reductase 1 B1 (AKR1B1) catalyzes the reduction of several aldehydes to alcohols consuming NADPH. Nevertheless, the ability of AKR1B1 to reduce different substrates renders difficult to comprehensively ascertain its biological role.

View Article and Find Full Text PDF

Missense mutations in the gene are among the most frequent alterations in human cancer. Consequently, many tumors show high expression of p53 point mutants, which may acquire novel activities that contribute to develop aggressive tumors. An unexpected aspect of mutant p53 function was uncovered by showing that some mutants can increase the malignant phenotype of tumor cells through alteration of the mevalonate pathway.

View Article and Find Full Text PDF