Publications by authors named "Nabila Boraie"

Genistein (Gen); a naturally occurring isoflavone, acts as a tyrosine kinase inhibitor and efficiently downregulates inflammatory cytokines, which are pivotal in eye inflammation. Also, Gen suffers from sparse ocular bioavailability due to poor solubility. In this work, nanostructured lipid carriers (NLCs) were successfully fabricated by using solid (stearic acid and compritol) and liquid (oleic acid) lipids.

View Article and Find Full Text PDF

Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery.

View Article and Find Full Text PDF

Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs).

View Article and Find Full Text PDF

The study aim was to develop an intravesical delivery system of quercetin for bladder cancer management in order to improve drug efficacy, attain a controlled release profile and extend the residence time inside the bladder. Either uncoated or chitosan coated quercetin-loaded solid lipid nanoparticles (SLNs) were prepared and evaluated in terms of colloidal, morphological and thermal characteristics. Drug encapsulation efficiency and its release behaviour were assessed.

View Article and Find Full Text PDF

Skin restoration following full-thickness injury poses significant clinical challenges including inflammation and scarring. Medicated scaffolds formulated from natural bioactive polymers present an attractive platform for promoting wound healing. Glibenclamide was formulated in collagen/chitosan composite scaffolds to fulfill this aim.

View Article and Find Full Text PDF

Intra-articular drug delivery represents a tempting strategy for local treatment of rheumatoid arthritis. Targeting drugs to inflamed joints bypasses systemic-related side effects. Albeit, rapid drug clearance and short joint residence limit intra-articular administration.

View Article and Find Full Text PDF

Systemic rheumatoid arthritis (RA) regimens fail to attain effective drug level at the affected joints and are associated with serious side effects. Herein, an attempt made to improve therapeutic outcomes of both leflunomide (LEF) which is a disease modifying antirheumatic and dexamethasone (Dex) through local delivery of combination therapy by intra-articular route. LEF and Dex were encapsulated in nanostructured lipid carriers (NLCs) and PLGA nanoparticles (NPs), respectively.

View Article and Find Full Text PDF

Despite the potent clinical efficacy of linezolid (LNZ) against drug-resistant tuberculosis, its safety and tolerability remain of major concern. Our objective is to develop antitubercular inhalable LNZ nano-embedded microparticles. In this context, LNZ incorporated in non-structured lipid carriers (NLCs) was characterized in terms of colloidal, morphological, thermal, and release profiles.

View Article and Find Full Text PDF

Oral treatment of rheumatoid arthritis (RA) with the immunomodulator, leflunomide (LEF), is associated with systemic side effects namely immunosuppression and hepatotoxicity. Herein, attempts to improve LEF therapeutic outcomes via nanostructured lipid carriers (NLCs) targeting inflamed rheumatic joints were executed. LEF-NLCs coated with either chondroitin sulphate (CHS) or chitosan (CS) were around 250 nm in size with negative or positive charge, respectively.

View Article and Find Full Text PDF

This study aims at improving the bioavailability of a poorly soluble phosphodiesterase-5 inhibitor; tadalafil (TD) via developing intranasal (IN) nanoemulsions (NEs). Optimum NE ingredients were selected based on solubility studies, emulsification tests, and phase diagram construction. Both o/w and w/o NEs were selected based on their drug loading capacity.

View Article and Find Full Text PDF

With the non-selective vasodilating action, short half-life and first-pass metabolism of sildenafil (SC), local application in the lung for pulmonary arterial hypertension is of high demand. Although several nanosystems have been lately investigated, nanostructured lipid carriers (NLCs) give promises of potential safety, biodegradability and controlled drug release. In the current study, NLCs comprising either precirol, stearic acid or beeswax as solid lipid in presence of oleic acid as liquid lipid and PVA or poloxamer as emulsifier were prepared.

View Article and Find Full Text PDF

This work aimed at designing efficient safe delivery system for intranasal (IN) brain targeting of the water soluble anti- migraine drug Almotriptan malate (ALM). Solid lipid nanoparticles (SLNs) were prepared by w/o/w double emulsion-solvent evaporation method. Selection of the optimized SLNs formula was based on evaluating particle size (PS), poly dispersity index (PDI) and entrapment efficiency (%EE).

View Article and Find Full Text PDF

Alendronate (ALN) is a BCS III bone resorption inhibitor, with very poor oral bioavailability. Our approach is to develop a minimally invasive thermogelling system for prolonged local delivery of ALN. For this, different chitosan-based thermogels were developed and characterised in terms of gelation time, injectability, pH, viscosity and thermoreversibility.

View Article and Find Full Text PDF

Phosphodiesterase type 5 (PDE-5) inhibitors - among which sildenafil citrate (SC) - play a primary role in the treatment of pulmonary hypertension (PH). Yet, SC can be only administered orally or parenterally with lot of risks. Targeted delivery of SC to the lungs via inhalation/nebulization is mandatory.

View Article and Find Full Text PDF

The study demonstrates the feasibility of prolonging gastric residence time and release rate of metronidazole (Mz) by preparing floating raft system (FRS) using ion-sensitive in situ gel forming polymers. FRSs contained 3, 4, 5 and 0.5, 0.

View Article and Find Full Text PDF

From the previous work (Part I), mucoadhesive formulae containing 5% CP/65% HPMC/30% lactose and 2% PC/68% HPMC/30% mannitol as well as formulae based on sodium carboxymethyl cellulose (SCMC) were selected. Medicated tablets were prepared using diltiazem hydrochloride (DZ) and metclopramide hydrochloride (MP) in two different doses (30 and 60 mg). The effect of drug and dose on the mucoadhesive properties and in-vitro drug release was evaluated.

View Article and Find Full Text PDF

Different types of mucoadhesive polymers, intended for buccal tablet formulation, were investigated for their comparative mucoadhesive force, swelling behavior, residence time and surface pH. The selected polymers were carbopols (CP934, and CP940), polycarbophil (PC), sodium carboxymethyl cellulose (SCMC) and pectin representing the anionic type, while chitosan (Ch) as cationic polymer and hydroxypropylmethyl cellulose (HPMC) as a non-ionic polymer. Results revealed that polyacrylic acid derivatives (PAA) showed the highest bioadhesion force, prolonged residence time and high surface acidity.

View Article and Find Full Text PDF

Mucoadhesive patches containing 10mg miconazole nitrate were evaluated. The patches were prepared with ionic polymers, sodium carboxymethyl cellulose (SCMC) and chitosan, or non-ionic polymers, polyvinyl alcohol (PVA), hydroxyethyl cellulose (HEC) and hydroxypropylmethyl cellulose (HPMC). Convenient bioadhesion, acceptable elasticity, swelling and surface pH were obtained.

View Article and Find Full Text PDF