In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED in the 0.
View Article and Find Full Text PDFThermal neutrality in rodents is achieved by large cyclic variations of the sympathetic drive of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Given the pivotal functional role of rostral ventromedial medulla (RVM) in nociception and rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, we aimed at circumscribing the brainstem regions that are the source of premotor afferents to sympathetic preganglionic neurons that control the vasomotor tone of the tail and hind paws. A thermometric infrared camera recorded indirectly the vasomotor tone of the tail and hind paws.
View Article and Find Full Text PDFIn thermal neutral condition, rats display cyclic variations of the vasomotion of the tail and paws, synchronized with fluctuations of blood pressure, heart rate, and core body temperature. "On-" and "off-" cells located in the rostral ventromedial medulla, a cerebral structure implicated in somatic sympathetic drive, 1) exhibit similar spontaneous cyclic activities in antiphase and 2) are activated and inhibited by thermal nociceptive stimuli, respectively. We aimed at evaluating the implication of such neurons in autonomic regulation by establishing correlations between their firing and blood pressure, heart rate, and skin and core body temperature variations.
View Article and Find Full Text PDFThe tail and paws in rodents are heat exchangers involved in the maintenance of core body temperature (T(core)). They are also the most widely used target organs to study acute or chronic "models" of pain. We describe the fluctuations of vasomotor tone in the tail and paws in conditions of thermal neutrality and the constraints of these physiological processes on the responses to thermal nociceptive stimuli, commonly used as an index of pain.
View Article and Find Full Text PDF