This study investigates the impact of the surface electric field on the quantification accuracy of boron (B) implanted silicon (Si) using atom probe tomography (APT). The Si Charge-State Ratio (CSR(Si) = Si/Si) was used as an indirect measure of the average apex electric field during analysis. For a range of electric fields, the accuracy of the total implanted dose and the depth profile shape determined by APT was evaluated against the National Institute of Standards and Technology Standard Reference Material 2137.
View Article and Find Full Text PDFA scalable platform to synthesize ultrathin heavy metals may enable high-efficiency charge-to-spin conversion for next-generation spintronics. Here, we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal that CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls.
View Article and Find Full Text PDFElectrochemical conversion of CO offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO into formate at low overpotentials and CO/H at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdH phase interconversion under reaction conditions as a function of electrode potential.
View Article and Find Full Text PDFExtended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface.
View Article and Find Full Text PDFCellulose is a structural linear polysaccharide that is naturally produced by plants and bacteria, making it the most abundant biopolymer on Earth. The hierarchical structure of cellulose from the nano- to microscale is intimately linked to its biosynthesis and the ability to process this sustainable resource for materials applications. Despite this, the morphology of bacterial cellulose microfibrils and their assembly into higher order structures, as well as the structural origins of the alternating crystalline and disordered supramolecular structure of cellulose, have remained elusive.
View Article and Find Full Text PDFThe visualisation and quantification of pore networks and main phases have been critical research topics in cementitious materials as many critical mechanical and chemical properties and infrastructure reliability rely on these 3D characteristics. In this study, we realised the mesoscale serial sectioning and analysis up to ∼80 μm by ∼90 μm by ∼60 μm on portland cement mortar using plasma focused ion beam (PFIB) for the first time. The workflow of working with mortar and PFIB was established applying a prepositioned hard silicon mask to reduce curtaining.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
Scalable synthesis of two-dimensional gallium (2D-Ga) covered by graphene layers was recently realized through confinement heteroepitaxy using silicon carbide substrates. However, the thickness, uniformity, and area coverage of the 2D-Ga heterostructures have not previously been studied with high-spatial resolution techniques. In this work, we resolve and measure the 2D-Ga heterostructure thicknesses using scanning electron microscopy (SEM).
View Article and Find Full Text PDFChemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys.
View Article and Find Full Text PDFReliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next-generation electronic, logic-memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe films with Re atoms via metal-organic chemical vapor deposition is reported.
View Article and Find Full Text PDFNear-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.
View Article and Find Full Text PDFHere the novel direct heteroepitaxial growth method of a 3D heteroepitaxial system is demonstrated on a 3D substrate, CdTe (111)/Al O (0001), which forms a spontaneous vdW-like bond at the interface, instead of the two 3D crystals being strongly bound. Despite a large lattice mismatch, the thin films are single crystals and maintain high quality due the compliance of the interface which accommodates strain. This weak bonding interface is accomplished by the self-assembly of a pseudomorphic chalcogenide layer on the sapphire surface during growth.
View Article and Find Full Text PDFDeveloping novel antimicrobials capable of controlling multidrug-resistant bacterial pathogens is essential to restrict the use of antibiotics. Bacteriophages (phages) constitute a major resource that can be harnessed as an alternative to traditional antimicrobial therapies. Phage ZCSE2 was isolated among several others from raw sewage but was distinguished by broad-spectrum activity against serovars considered pathogenic to humans and animals.
View Article and Find Full Text PDFWe report on high-quality tellurium oxide waveguides integrated on a low-loss silicon nitride wafer-scale platform. The waveguides consist of silicon nitride strip features, which are fabricated using a standard foundry process and a tellurium oxide coating layer that is deposited in a single post-processing step. We show that by adjusting the SiN strip height and width and TeO layer thickness, a small mode area, small bend radius and high optical intensity overlap with the TeO can be obtained.
View Article and Find Full Text PDFHighly-directional image artifacts such as ion mill curtaining, mechanical scratches, or image striping from beam instability degrade the interpretability of micrographs. These unwanted, aperiodic features extend the image along a primary direction and occupy a small wedge of information in Fourier space. Deleting this wedge of data replaces stripes, scratches, or curtaining, with more complex streaking and blurring artifacts-known within the tomography community as "missing wedge" artifacts.
View Article and Find Full Text PDFFocused ion beam coupled with scanning electron microscopy (FIB-SEM) is a popular technique for advanced electron microscopy with applications such as, high-precision site-specific lamella sample preparation for transmission electron microscopy (TEM) and slice-and-view FIB 3-dimensional tomography. Damage caused by the electron imaging component of FIB-SEM may be compounded with damage from the ions during the ion milling process. There are known strategies for mitigating damage from ions and electrons (cryo-SEM, dose-control, voltage control), but the electron damage on common embedding resins for EM has not been explored in detail beyond their resistance to shape-change.
View Article and Find Full Text PDFWe present a flexible linear optimization model for correcting multi-angle curtaining effects in plasma focused ion beam scanning electron microscopy (PFIB-SEM) images produced by rocking-polishing schemes. When PFIB-SEM is employed in a serial sectioning tomography workow, it is capable of imaging large three-dimensional volumes quickly, providing rich information in the critical 10-100 nm feature length scale. During tomogram acquisition, a "rocking polish" is often used to reduce straight-line "curtaining" gradations in the milled sample surface.
View Article and Find Full Text PDFThe crystallization of amorphous germanium telluride (GeTe) thin films is controlled with nanoscale resolution using the heat from a thermal AFM probe. The dramatic differences between the amorphous and crystalline GeTe phases yield embedded nanoscale features with strong topographic, electronic, and optical contrast. The flexibility of scanning probe lithography enables the width and depth of the features, as well as the extent of their crystallization, to be controlled by varying probe temperature and write speed.
View Article and Find Full Text PDFOne of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties.
View Article and Find Full Text PDFHorseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.
View Article and Find Full Text PDFSingle-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2015
Organic nanotubes form in aqueous solution near physiological pH by self-assembly of lithocholic acid (LCA) with inner diameters of 20-40nm. The encapsulation of enhanced green fluorescent protein (eGFP) and resultant confinement effect for eGFP within these nanotubes is studied via confocal microscopy. Timed release rate studies of eGFP encapsulated in LCA nanotubes and fluorescence recovery after photobleaching (FRAP) indicate that the diffusive transport of eGFP out of and/or within the nanotubes is very slow, in contrast to the rapid introduction of eGFP into the nanotubes.
View Article and Find Full Text PDFSeven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory.
View Article and Find Full Text PDFPlasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials.
View Article and Find Full Text PDF