Retrospective lineage reconstruction of humans predicts that dramatic clonal imbalances in the body can be traced to the 2-cell stage embryo. However, whether and how such clonal asymmetries arise in the embryo is unclear. Here, we performed prospective lineage tracing of human embryos using live imaging, non-invasive cell labeling, and computational predictions to determine the contribution of each 2-cell stage blastomere to the epiblast (body), hypoblast (yolk sac), and trophectoderm (placenta).
View Article and Find Full Text PDFJ Assist Reprod Genet
May 2019
Objective: To determine the accuracy of cell-free DNA (cfDNA) in spent embryo medium (SEM) for ploidy and sex detection at the cleavage and blastocyst stages. To determine if assisted hatching (AH) and morphologic grade influence cfDNA concentration and accuracy.
Design: Prospective cohort.
Purpose: Preimplantation genetic screening (PGS) and assessment of mitochondrial content (MC) are current methods for selection of the best embryos for transfer. Studies suggest that time-lapse morphokinetics (TLM) may also be helpful for selecting embryos more likely to implant. In our study, we sought to examine the relationship between TLM parameters and MC to determine if they could be used adjunctively in embryo selection.
View Article and Find Full Text PDFPreimplantation genetic screening (PGS) is a component of IVF entailing selection of an embryo for transfer on the basis of chromosomal normalcy. If PGS were integrated with single embryo transfer (SET) in a surrogacy setting, this approach could improve pregnancy rates, minimize miscarriage risk, and limit multiple gestations. Even without PGS, pregnancy rates for IVF surrogacy cases are generally satisfactory, especially when treatment utilizes embryos derived from young oocytes and transferred to a healthy surrogate.
View Article and Find Full Text PDFBackground: Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood.
Methodology/principal Findings: To better understand interactions between Salmonella enterica sv.
Salmonella has a natural ability to target a wide range of tumors in animal models. However, strains used for cancer therapy have generally been selected only for their avirulence rather than their tumor-targeting ability. To select Salmonella strains that are avirulent and yet efficient in tumor targeting, a necessary criterion for clinical applications, we measured the relative fitness of 41,000 Salmonella transposon insertion mutants growing in mouse models of human prostate and breast cancer.
View Article and Find Full Text PDFSalmonella enterica and avirulent derivatives prefer solid tumors over normal tissue in animal models. The identification of endogenous Salmonella promoters that are preferentially activated in tumors could further our understanding of this phenomenon. Toward this goal, a random library of S.
View Article and Find Full Text PDFThere are more than 2,500 known Salmonella serovars, and some of these can be further subclassified into groups of strains that differ profoundly in their gene content. We refer to these groups of strains as "genovars." A compilation of comparative genomic hybridization data on 291 Salmonella isolates, including 250 S.
View Article and Find Full Text PDF