Publications by authors named "Nabil Altememi"

Epidermal growth factor (EGF) is a known mitogen for neural stem and progenitor cells (NS/NPCs) in the central nervous system (CNS). In vitro, EGF maintains NS/NPCs in the proliferative state, whereas in the normal rodent brain it promotes their proliferation and migration in the subventricular zone (SVZ). Additionally, EGF administration can augment neuronal replacement in the ischemic-injured adult striatum.

View Article and Find Full Text PDF

Stem/progenitor cells reside throughout the adult CNS and are actively dividing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. This neurogenic capacity of the SVZ and DG is enhanced following traumatic brain injury (TBI) suggesting that the adult brain has the inherent potential to restore populations lost to injury. This raises the possibility of developing strategies aimed at harnessing the neurogenic capacity of these regions to repair the damaged brain.

View Article and Find Full Text PDF

Object: Hyperbaric oxygen (HBO2) has been shown to improve outcome after severe traumatic brain injury, but its underlying mechanisms are unknown. Following lateral fluid-percussion injury (FPI), the authors tested the effects of HBO2 treatment as well as enhanced normobaric oxygenation on mitochondrial function, as measured by both cognitive recovery and cellular adenosine triphosphate (ATP) levels.

Methods: Adult male Sprague-Dawley rats were subjected to moderate lateral FPI or sham injury and were allocated to one of four treatment groups: 1) FPI treated with 4 hours of normobaric 30% O2; 2) FPI treated with 4 hours of normobaric 100% O2; 3) FPI treated with 1 hour of HBO2 plus 3 hours of normobaric 100% O2; and 4) sham-injured treated with normobaric 30% O2.

View Article and Find Full Text PDF

Objective: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury.

View Article and Find Full Text PDF