Objective: This study presents a comparative analysis of RF and SVM for predicting calcein release from ultrasound-triggered, targeted liposomes under varied low-frequency ultrasound (LFUS) power densities (6.2, 9, and 10 mW/cm).
Methods: Liposomes loaded with calcein and targeted with seven different moieties (cRGD, estrone, folate, Herceptin, hyaluronic acid, lactobionic acid, and transferrin) were synthesized using the thin-film hydration method.
Water pollution is a severe and challenging issue threatening the sustainable development of human civilization. Besides other pollutants, waste fluid streams contain phenolic compounds. These have an adverse effect on the human health and marine ecosystem due to their toxic, mutagenic, and carcinogenic nature.
View Article and Find Full Text PDFWhile several group contribution method (GCM) models have been developed in recent years for the prediction of ionic liquid (IL) properties, some challenges exist in their effective application. Firstly, the models have been developed and tested based on different datasets; therefore, direct comparison based on reported statistical measures is not reliable. Secondly, many of the existing models are limited in the range of ILs for which they can be used due to the lack of functional group parameters.
View Article and Find Full Text PDFThe thermal conductivities of selected deep eutectic solvents (DESs) were determined using the modified transient plane source (MTPS) method over the temperature range from 295 K to 363 K at atmospheric pressure. The results were found to range from 0.198 W·m·K to 0.
View Article and Find Full Text PDFWe have been developing a drug delivery system that uses Pluronic P105 micelles to sequester a chemotherapeutic drug--namely, Doxorubicin (Dox)--until it reaches the cancer site. Ultrasound is then applied to release the drug directly to the tumor and in the process minimize the adverse side effects of chemotherapy on non-tumor tissues. Here, we present an artificial neural network (ANN) model that attempts to model the dynamic release of Dox from P105 micelles under different ultrasonic power intensities at two frequencies.
View Article and Find Full Text PDFThis paper models steady state acoustic release of Doxorubicin (Dox) from Pluronic P105 micelles using Artificial Neural Networks (ANN). Previously collected release data were compiled and used to train, validate, and test an ANN model. Sensitivity analysis was then performed on the following operating conditions: ultrasonic frequency, power density, Pluronic P105 concentration, and temperature.
View Article and Find Full Text PDF