Publications by authors named "Nabet B"

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein.

View Article and Find Full Text PDF

Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with the G12C mutation and advanced our understanding of the function of this mutation. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors.

View Article and Find Full Text PDF

Blockade of immune checkpoints PD-1 and TIGIT has demonstrated activity in mouse tumor models and human patients with cancer. Although these coinhibitory receptors can restrict signaling in CD8 T cells by regulating their associated co-stimulatory receptors CD28 and CD226, the functional consequences of combining PD-1 and TIGIT blockade remain poorly characterized. In mouse tumor models, we show that combination blockade elicited CD226-driven clonal expansion of tumor antigen-specific CD8 T cells.

View Article and Find Full Text PDF

Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have revolutionized cancer therapy across many indications including urothelial carcinoma (UC). Because many patients do not benefit, a better understanding of the molecular mechanisms underlying response and resistance is needed to improve outcomes. We profiled tumors from 2,803 UC patients from four late-stage randomized clinical trials evaluating the PD-L1 inhibitor atezolizumab by RNA sequencing (RNA-seq), a targeted DNA panel, immunohistochemistry, and digital pathology.

View Article and Find Full Text PDF

Resistance to immune checkpoint inhibitors (ICIs) is common, even in tumors with T cell infiltration. We thus investigated consequences of ICI-induced T cell infiltration in the microenvironment of resistant tumors. T cells and neutrophil numbers increased in ICI-resistant tumors following treatment, in contrast to ICI-responsive tumors.

View Article and Find Full Text PDF
Article Synopsis
  • IMbrella A is a Phase III study that allowed patients from earlier atezolizumab trials, like IMpower133, to continue receiving treatment for extensive-stage small cell lung cancer (SCLC) with atezolizumab plus chemotherapy after the initial trials closed.
  • In IMbrella A, 18 out of 26 eligible patients rolled over for further treatment, and results showed that median follow-up was 59.4 months with estimated three-, four-, and five-year overall survival rates of 16%, 13%, and 12%, respectively.
  • The study reported that 16.7% of patients experienced serious adverse events, with only one grade two hypothyroidism noted,
View Article and Find Full Text PDF
Article Synopsis
  • - Small cell lung cancer (SCLC) is known for its resistance to therapy, making it essential to identify phenotypes that contribute to this resistance and immune evasion; previous studies have indicated that DNA damage response (DDR) mechanisms may play a role in these issues across various cancers.
  • - A new method was developed to analyze DDR genes in SCLC clinical samples, revealing three distinct DDR phenotypes characterized by differences in DNA repair gene expression, replication stress, and G2/M cell cycle arrest, which correlate with how SCLC tumors respond to chemotherapy.
  • - The study concludes that understanding these DDR clusters can improve our knowledge of SCLC biology and treatment responses, suggesting that targeting specific DDR phenotypes may enhance patient outcomes in the
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces MOSBY, a new model that uses deep neural networks to analyze H&E stained images for finding clinically relevant spatial biomarkers in cancer.
  • MOSBY employs advanced techniques to correlate image features with genetic information and has shown strong predictive power for patient survival beyond traditional gene expression analyses.
  • The model successfully identified specific spatial features linked to cancer risks and outcomes, highlighting its potential in enhancing cancer research and aiding clinical decisions.
View Article and Find Full Text PDF

Small molecule-mediated proteasomal degradation of proteins is a powerful tool for synthetic regulation of biological activity. To control Cas9 activity in cells, we engineered an anti-CRISPR protein, AcrIIA4, fused to a degradation (dTAG) or small molecule assisted shutoff (SMASh) tag. Co-expression of the tagged AcrIIA4 along with Cas9 and riboswitch-regulated sgRNAs enables precise tunable control of CRISPR activity by small molecule addition.

View Article and Find Full Text PDF
Article Synopsis
  • Oncogenes can be targeted with small molecules, but the loss of tumor suppressor genes like SMARCB1 poses unique challenges in cancer treatment.
  • Cancer Dependency Map Project utilized CRISPR screening with SMARCB1-mutant cell lines, revealing that DCAF5 is critical for these cancer cells' survival.
  • DCAF5 helps regulate SWI/SNF complexes and its depletion allows for the reaccumulation of these complexes, potentially reversing the cancer state, suggesting that targeting similar quality-control factors could offer new therapeutic options.
View Article and Find Full Text PDF

Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing.

View Article and Find Full Text PDF

Small molecules that chemically induce proximity between two proteins have been widely used to precisely modulate protein levels, stability, and activity. Recently, several studies developed novel strategies that employ heterobifunctional molecules that co-opt shuttling proteins to control the spatial localization of a target protein, unlocking new potential within this domain. Together, these studies lay the groundwork for novel targeted protein relocalization modalities that can rewire the protein circuitry and interactome to influence biological outcomes.

View Article and Find Full Text PDF

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone. However, there remains little consensus on the mechanism(s) of response with this combination.

View Article and Find Full Text PDF

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I).

View Article and Find Full Text PDF

Objectives: In the Phase I/III IMpower133 study, first-line atezolizumab plus carboplatin and etoposide (CP/ET) treatment for extensive-stage small cell lung cancer (ES-SCLC) significantly improved overall survival (OS) and progression-free survival versus placebo plus CP/ET. We explored patient and disease characteristics associated with long-term survival in IMpower133, and associations of differential gene expression and SCLC-A (ASCL1-driven), SCLC-N (NEUROD1-driven), SCLC-P (POU2F3-driven), and SCLC-inflamed (SCLC-I) transcriptional subtypes with long-term survival.

Materials And Methods: Patients with previously untreated ES-SCLC were randomized 1:1 to four 21-day cycles of CP/ET with atezolizumab or placebo.

View Article and Find Full Text PDF

Achieving tumor-specific protein loss remains a challenge in the delivery of proteolysis-targeting chimeras (PROTACs) as cancer therapeutics. As a solution, Wang et al. recently developed nanoformulated PROTACs (NAPs), a novel photoactivatable degradation approach.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is an attractive drug target due to its overexpression in cancer. FAK functions as a non-receptor tyrosine kinase and scaffolding protein, coordinating several downstream signaling effectors and cellular processes. While drug discovery efforts have largely focused on targeting FAK kinase activity, FAK inhibitors have failed to show efficacy as single agents in clinical trials.

View Article and Find Full Text PDF

Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay.

View Article and Find Full Text PDF

Lineage-defining transcription factors form densely interconnected circuits in chromatin occupancy assays, but the functional significance of these networks remains underexplored. We reconstructed the functional topology of a leukemia cell transcription network from the direct gene-regulatory programs of eight core transcriptional regulators established in pre-steady state assays coupling targeted protein degradation with nascent transcriptomics. The core regulators displayed narrow, largely non-overlapping direct transcriptional programs, forming a sparsely interconnected functional hierarchy stabilized by incoherent feed-forward loops.

View Article and Find Full Text PDF