Publications by authors named "Nabel G"

Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies.

View Article and Find Full Text PDF

Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 and CD8 T cells.

View Article and Find Full Text PDF

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection.

View Article and Find Full Text PDF

Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus.

View Article and Find Full Text PDF

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies . To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites into multispecific antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers focused on the G glycoprotein of the respiratory syncytial virus (RSV) as a promising vaccine target due to its ability to generate strong neutralizing antibodies and reduce disease severity in animal studies.!* -
  • Three constructs were created to optimize the display of a key part of the G glycoprotein (Gcc), with one construct showing great immunogenicity in mice and a human model, suggesting its potential effectiveness as a vaccine.!* -
  • The combination of the Gcc-Foldon construct with another stabilized nanoparticle (pre-F-NP) led to a bivalent vaccine that showed no interference and strong immune responses in RSV-primed macaques, plus effective protection in mice
View Article and Find Full Text PDF

Epstein-Barr virus (EBV) is the major cause of infectious mononucleosis and is associated with several human cancers and, more recently, multiple sclerosis. Despite its prevalence and health impact, there are currently no vaccines or treatments. Four viral glycoproteins (gp), gp350 and gH/gL/gp42, mediate entry into the major sites of viral replication, B cells, and epithelial cells.

View Article and Find Full Text PDF

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ).

View Article and Find Full Text PDF

Effective antitumour immunity depends on the orchestration of potent T cell responses against malignancies. Regression of human cancers has been induced by immune checkpoint inhibitors, T cell engagers or chimeric antigen receptor T cell therapies. Although CD8 T cells function as key effectors of these responses, the role of CD4 T cells beyond their helper function has not been defined.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques.

View Article and Find Full Text PDF

Local immunotherapy ideally stimulates immune responses against tumors while avoiding toxicities associated with systemic administration. Current strategies for tumor-targeted, gene-based delivery, however, are limited by adverse effects such as off-targeting or antivector immunity. We investigated the intratumoral administration of saline-formulated messenger (m)RNA encoding four cytokines that were identified as mediators of tumor regression across different tumor models: interleukin-12 (IL-12) single chain, interferon-α (IFN-α), granulocyte-macrophage colony-stimulating factor, and IL-15 sushi.

View Article and Find Full Text PDF

Seasonal influenza vaccines confer protection against specific viral strains but have restricted breadth that limits their protective efficacy. The H1 and H3 subtypes of influenza A virus cause most of the seasonal epidemics observed in humans and are the major drivers of influenza A virus-associated mortality. The consequences of pandemic spread of COVID-19 underscore the public health importance of prospective vaccine development.

View Article and Find Full Text PDF

Developing a cure for HIV is a global priority. Target product profiles are a tool commonly used throughout the drug development process to align interested parties around a clear set of goals or requirements for a potential product. Three distinct therapeutic modalities (combination therapies, ex-vivo gene therapy, and in-vivo gene therapy) for a target product profile for an HIV cure were identified.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

A growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public.

View Article and Find Full Text PDF

A stabilized form of the respiratory syncytial virus (RSV) fusion (F) protein has been explored as a vaccine to prevent viral infection because it presents several potent neutralizing epitopes. Here, we used a structure-based rational design to optimize antigen presentation and focus antibody (Ab) responses to key epitopes on the pre-fusion (pre-F) protein. This protein was fused to ferritin nanoparticles (pre-F-NP) and modified with glycans to mask nonneutralizing or poorly neutralizing epitopes to further focus the Ab response.

View Article and Find Full Text PDF

Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem.

View Article and Find Full Text PDF

Despite the significant therapeutic advances provided by immune-checkpoint blockade and chimeric antigen receptor T cell treatments, many malignancies remain unresponsive to immunotherapy. Bispecific antibodies targeting tumor antigens and activating T cell receptor signaling have shown some clinical efficacy; however, providing co-stimulatory signals may improve T cell responses against tumors. Here, we developed a trispecific antibody that interacts with CD38, CD3 and CD28 to enhance both T cell activation and tumor targeting.

View Article and Find Full Text PDF

Antibody therapies for Alzheimer's Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies' own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments.

View Article and Find Full Text PDF

Seasonal influenza vaccines represent a positive intervention to limit the spread of the virus and protect public health. Yet continual influenza evolution and its ability to evade immunity pose a constant threat. For these reasons, vaccines with improved potency and breadth of protection remain an important need.

View Article and Find Full Text PDF

Western, Eastern, and Venezuelan equine encephalitis viruses (WEEV, EEEV, and VEEV, respectively) are important mosquito-borne agents that pose public health and bioterrorism threats. Despite considerable advances in understanding alphavirus replication, there are currently no available effective vaccines or antiviral treatments against these highly lethal pathogens. To develop a potential countermeasure for viral encephalitis, we generated a trivalent, or three-component, EEV vaccine composed of virus-like particles (VLPs).

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization.

View Article and Find Full Text PDF