Publications by authors named "Nabeel Mujtaba Abbasi"

Genotoxic impurities (GTIs) are potential carcinogens that need to be controlled down to ppm or lower concentration levels in pharmaceuticals under strict regulations. The static headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD) is an effective approach to monitor halogenated and nitroaromatic genotoxins. Deep eutectic solvents (DESs) possess tunable physico-chemical properties and low vapor pressure for HS-GC methods.

View Article and Find Full Text PDF

Background: The incorporation of bimetallic magnetic ionic liquids (MILs) in microextraction methods is an emerging trend due to the improved magnetic susceptibility offered by these solvents, which relies on the presence of metallic components in both the cation and the anion. This feature favors easy magnetic separation of these solvents in analytical sample preparation strategies. However, reported liquid-phase microextraction methods based on bimetallic MILs still present an important drawback in that the MILs are highly viscous, making a dispersive solvent during the microextraction procedure necessary, while also requiring a tedious back-extraction step prior to the chromatographic analysis.

View Article and Find Full Text PDF

For the first time, benzophenone and related compounds were investigated in açaí-based food products. An extraction method based on the dilute-and-shoot approach, combined with the use of in-situ formed metal-containing ionic liquids (MCILs) followed by high-performance liquid chromatography, was developed and validated. A nickel and cobalt-based MCIL, in addition to the ratio of MCIL to lithium bis[(trifluoromethyl)sulfonyl]imide salt ([Li][NTf]) for the ensuing metathesis reaction, were optimized.

View Article and Find Full Text PDF

Magnetic ionic liquids (MILs) comprise a subcategory of ionic liquids (ILs) and contain a paramagnetic metal center allowing them to be readily manipulated by an external magnetic field. While MILs are popularly employed as solvents in catalysis, separations, and organic synthesis, most low viscosity combinations possess a hydrophilic character that limits their use in aqueous matrices. To date, no study has reported the synthesis and characterization of hydrophobic MILs with viscosities similar to those of hydrophilic MILs and organic solvents while simultaneously exhibiting enhanced magnetic and thermal properties.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are a class of sustainable solvents that have found numerous applications in different fields. One of their main attributes is the possibility of easily modifying their physicochemical properties by varying the type of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) that comprise them. Choline chloride ([Ch][Cl])-based hydrophilic DESs were among the first studied and the most used because of their capacity to easily create a hydrogen bonding network that lies in its unique chemical structure, characterized by a hydroxyl substituent within the ammonium headgroup.

View Article and Find Full Text PDF

Choline chloride-based deep eutectic solvents (DESs) are immensely popular in organic synthesis, catalysis, electrochemistry, and separation science. A popular choice of hydrogen bond donor (HBD) among these DESs consists of both straight-chain and branched polyols that can incorporate additional functional groups, such as ether linkages. Previous studies have shown that the extraction efficiency is significantly altered when the molar ratio of HBD in choline chloride-based DES systems is varied, but no study has been able to relate it to their solvation characteristics.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have gained increasing popularity in separation science due to the fact that their physico-chemical properties can be easily fine-tuned by varying the type or ratio of hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). While it is well-known that the molar ratio of HBA/HBD affects the melting point of a eutectic mixture, much less is understood regarding its effect on the magnitude of individual solvation interactions. This is largely due to the fact that established solvatochromic dye methods lack sensitivity when the HBA/HBD ratio is varied slightly in a eutectic mixture.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as alternatives to conventional organic solvents and ionic liquids (ILs). Their tunable and designer physio-chemical properties, low cost, and ease of preparation make them attractive solvent systems for use in extractions and additives to chromatographic separations. However, due to the diverse range of hydrogen bond acceptors and donors that comprise DESs, choosing the appropriate solvent for separations can be challenging.

View Article and Find Full Text PDF