Sensors (Basel)
April 2022
The timely detection of seizure activity in the case of newborns can help save lives. Clinical signs of seizures in newborns are difficult to observe, so, in this study, we propose an automated method of detecting seizures in newborns using multi-channel electroencephalogram (EEG) recording acquired from 36 newborns admitted to Royal Women's Hospital, Brisbane, Australia. A novel set of time-frequency marginal features are defined to detect seizure activity in newborns.
View Article and Find Full Text PDFInstantaneous frequency in multi-sensor recordings is an important parameter for estimation of direction of arrival estimation, source separation, and sparse reconstruction. The instantaneous frequency estimation problem becomes challenging when signal components have close or overlapping signatures and the number of sensors is less than the number of sources. In this study, we develop a computationally efficient method that exploits the direction of the IF curve in addition to the angle of arrival as additional features for the accurate tracking of IF curves.
View Article and Find Full Text PDFThe detection of seizure activity in electroencephalogram (EEG) segments is very important for the classification and localization of epileptic seizures. The evolution of a seizure in an EEG usually appears as a train of non-uniformly spaced spikes and/or as piecewise linear frequency modulated signals. If a seizure is present, then the energy of the EEG is concentrated along the time axis and the frequency axis in the time-frequency plane.
View Article and Find Full Text PDF