Publications by authors named "Na N"

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

Objectives: It is unknown when inosine was first employed as a renoprotective agent in the context of kidney transplantation procedures. However, there is no clinical evidence to support a protective role of inosine. The aim of this study was to investigate the effect of inosine on graft recovery.

View Article and Find Full Text PDF

To investigate the effects of the combined addition of and sucrose on the fermentation weight loss (FWL), fermentation quality, and microbial community structure of ensiled rape straw under varying packing density conditions. After harvesting, the rapeseed straw was collected, cut into 1-2 cm pieces, and sprayed with sterile water to adjust the moisture content to 60%. The straw was then divided into two groups: one treated with additives (1 × 10 CFU/g fresh material of and 10 kg/t fresh material of sucrose), and the other sprayed with an equivalent amount of sterile water as the control (CK).

View Article and Find Full Text PDF

Background: Sweet sorghum is used mainly as an energy crop and feed crop in arid and semiarid regions, and ensiling is a satisfactory method for preserving high-quality sweet sorghum. The aim of this study was to reveal the dynamics of the fermentation quality, bacterial communities, and fermentation weight loss (FWL) of sweet sorghum silage during fermentation.

Methods: Sweet sorghum was harvested at the first inflorescence spikelet stage and ensiled without (CK) or with lactic acid bacterial (LAB) additives (L).

View Article and Find Full Text PDF

Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation sensitizing TiO, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (-CAN) on TiO was revealed, contributing to selective C-N coupling rather than dechlorination.

View Article and Find Full Text PDF

Objectives: Extensive researches highlight the detrimental impact of sleep disorders such as insomnia and insufficient sleep duration on kidney function. However, establishing a clear causal relationship between insomnia, sleep duration, and kidney function remains challenging. This study aims to estimate this relationship using Mendelian randomization (MR).

View Article and Find Full Text PDF

Aims: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. In the present study, we evaluated SIRT4 expression levels in HCC specimens and investigated the relationships between SIRT4 expression levels, clinicopathological factors, and microvascular infiltration (MVI) in HCC.

Methods: The expression levels of SIRT4 in 108 HCC specimens were examined by immunohistochemical staining.

View Article and Find Full Text PDF

Background: The use of hepatitis B virus (HBV)-positive donor kidneys to expand the donor pool has been implemented, but limited evidence exists regarding their impact on transplant outcomes. This study aimed to investigate the effects of donor HBV infection on transplant outcomes.

Methods: Donor and recipient data between 2015 and 2021 were collected.

View Article and Find Full Text PDF

Background: Diagnosis of kidney transplant rejection currently relies on manual histopathological assessment, which is subjective and susceptible to inter-observer variability, leading to limited reproducibility. We aim to develop a deep learning system for automated assessment of whole-slide images (WSIs) from kidney allograft biopsies to enable detection and subtyping of rejection and to predict the prognosis of rejection.

Method: We collected H&E-stained WSIs of kidney allograft biopsies at 400x magnification from January 2015 to September 2023 at two hospitals.

View Article and Find Full Text PDF

We present a novel photon-acid diffusion method to integrate polymer microlenses (MLs) on a four-channel, high-speed photo-receiver consisting of normal-incidence germanium (Ge) p-i-n photodiodes (PDs) fabricated on a 200 mm Si substrate. For a 29 µm diameter PD capped with a 54 µm diameter ML, its dark current, responsivity, 3 dB bandwidth (BW), and effective aperture size at -3 V bias and 850 nm wavelength are measured to be 138 nA, 0.6 A/W, 21.

View Article and Find Full Text PDF

Rheumatic heart disease (RHD) is an important and preventable cause of cardiovascular death and disability, but the lack of clarity about its exact mechanisms makes it more difficult to find alternative methods or prevention and treatment. We previously demonstrated that increased IL-17 expression plays a crucial role in the development of RHD-related valvular inflammatory injury. Macrophage autophagy/polarization may be a pro-survival strategy in the initiation and resolution of the inflammatory process.

View Article and Find Full Text PDF
Article Synopsis
  • Rejection significantly impacts the long-term success of kidney transplants, making early detection and treatment crucial for improving outcomes.
  • The study investigates the role of RNA-binding proteins (RBPs) in kidney transplant rejection by analyzing gene expression data and identifying eight key RBPs that are upregulated during rejection.
  • A new prediction model developed from these RBPs shows high diagnostic accuracy for T cell mediated rejection and can effectively forecast graft survival in both rejection and non-rejection cases.
View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs.

View Article and Find Full Text PDF

Pyroptosis has attracted widespread concerns in cancer therapy, while the therapeutic efficiency could be significantly restricted by using the crucial pyroptosis checkpoint of autophagy and tumor hypoxia. Herein, a DNA nanocomplex (DNFs@ZnMn), containing cascade DNAzymes, promoter-like ZnO-Mn nanozymes and photosensitizers, was constructed in one pot through rolling circle amplification reactions to induce pyroptosis through disrupting autophagy. After targeting cancer cells with a high expression of H and glutathione, DNFs@ZnMn decomposed to expose DNAzymes and promoter-like ZnO-Mn nanozymes.

View Article and Find Full Text PDF

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN@PtN/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity.

View Article and Find Full Text PDF

Single-atom enzymes (SAzymes) exhibit great potential for chemodynamic therapy (CDT); while, general application is still challenged by their instability and unavoidable side effects during delivery. Herein, a manganese-based polyoxometalate single-atom enzyme (Mn-POM SAE) is first introduced into tumor-specific CDT, which exhibits tumor microenvironment (TME)-activated transition of nontoxicity-to-toxicity. Different from traditional POM materials, the aggregates of low-toxic Mn-POM SAE nanospheres are obtained at neutral conditions, facilitating efficient delivery and avoiding toxicity problems in normal tissues.

View Article and Find Full Text PDF

Purpose: Advanced lung cancer and its treatment serve as a sudden stressful event that profoundly impacts the psychological experience of both the patients and their primary caregiver. This study used dyadic analyses to explore the dyadic effects of social support on benefit finding and whether hope level mediates the patient-caregiver dyads in advanced lung cancer.

Methods: Two hundred ninety-five pairs of patients with advanced lung cancer and primary caregivers completed the Social Support Rating Scale (SSRS), the Herth Hope Index (HHI), and the Benefit Finding Scale (BFS).

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, CN-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of CN nanosheets.

View Article and Find Full Text PDF

Background: Acute Kidney Injury (AKI) is defined as a sudden loss of kidney function, which is often caused by drugs, toxins, and infections. The large spectrum of AKI implies diverse pathophysiological mechanisms. In many cases, AKI can be lethal, and kidney replacement therapy is frequently needed.

View Article and Find Full Text PDF

The ability to detect single photons has led to the advancement of numerous research fields. Although various types of single-photon detector have been developed, because of two main factors-that is, (1) the need for operating at cryogenic temperature and (2) the incompatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes-so far, to our knowledge, only Si-based single-photon avalanche diode (SPAD) has gained mainstream success and has been used in consumer electronics. With the growing demand to shift the operation wavelength from near-infrared to short-wavelength infrared (SWIR) for better safety and performance, an alternative solution is required because Si has negligible optical absorption for wavelengths beyond 1 µm.

View Article and Find Full Text PDF

Chronic rejection is the primary cause of late allograft failure, however, the current treatments for chronic rejection have not yielded desirable therapeutic effects. B cell activation and donor-specific antibody (DSA) production are the primary factors leading to chronic rejection. Bruton's tyrosine kinase (BTK) plays a key role in the activation and differentiation of B cells and in antibody production.

View Article and Find Full Text PDF

We developed a dual-mode biosensor that utilizes DNA conformational changes and ultraviolet photolysis for electrochemical (EC) and fluorescence (FL) detection. In this study, a stem-loop-structured carcinoembryonic antigen (CEA) aptamer was modified on an Au electrode, and this aptamer contained a redox-labeled methylene blue (MB), short-chain DNA with a 6-carboxylic fluorescein (FAM) and a PC linker that can be cleaved by ultraviolet light. Subsequently, CEA and CEA antibody-modified upconversion nanoparticle bioconjugates (CEA-Ab@UCNPs) were added.

View Article and Find Full Text PDF

Background: The combination of immune checkpoint inhibitors and anti-angiogenic agents has been proposed as a promising strategy to improve the outcome of advanced triple-negative breast cancer (TNBC). However, further investigation is warranted to elucidate the specific mechanisms underlying the effects of combination therapy and its potential as neoadjuvant therapy for early-stage TNBC.

Methods: In this study, we constructed humanized mouse models by engrafting the human immune system into severely immunodeficient mice and subsequently implanting TNBC cells into the model.

View Article and Find Full Text PDF

Adylov, Kamelin & Makhmedov 1987 is one of the poorly studied narrow endemics of Fergana Valley, one of Central Asia's most densely human-populated regions. In this study, we sequenced, assembled, and characterized the complete plastome of by using high-throughput Illumina reads. The complete chloroplast genome consisted of 151,324 bp, including a large single-copy (LSC) region (82,775 bp), a small single-copy (SSC) region (17,357 bp), and two inverted repeat regions (25,596 bp each).

View Article and Find Full Text PDF

Transplant renal vein thrombosis is a rare complication after kidney transplantation, which can seriously threaten graft survival. Though the measures like thrombolytic therapy or operative intervention could be taken to deal with this complication, allograft loss is the most common outcome. Thus, early finding as well as decisive intervention is crucial to saving the graft.

View Article and Find Full Text PDF