Publications by authors named "NUGEYRE M"

Seminal plasma (SP) is the main vector of C. trachomatis (CT) during heterosexual transmission from male to female. It has immunomodulatory properties and impacts the susceptibility to HIV-1 infection, but its role has not been explored during CT infection.

View Article and Find Full Text PDF

Background: The female reproductive tract (FRT) mucosa is the first line of defense against sexually transmitted infection (STI). FRT environmental factors, including immune-cell composition and the vaginal microbiota, interact with each other to modulate susceptibility to STIs. Moreover, the menstrual cycle induces important modifications within the FRT mucosa.

View Article and Find Full Text PDF

The female reproductive tract (FRT) is the main site of entry of sexually transmitted infections (STIs). Toll-like receptors (TLRs) that recognize pathogenic motifs are widely expressed in the FRT. TLR stimulation induces immune activation and local production of inflammatory mediators.

View Article and Find Full Text PDF

The composition of the microbiota in cynomolgus macaques is only partially characterized, although this animal model is often used to study pathogenesis and preventive strategies against infections. We thus performed, for the first time, a longitudinal characterization of the vaginal and rectal microbiota of five cycling female cynomolgus macaques. Samples were collected weekly for 15 weeks and the V3/V4 regions of the16S rRNA gene sequenced.

View Article and Find Full Text PDF

HIV-1 sexual transmission occurs mainly via mucosal semen exposures. In the female reproductive tract (FRT), seminal plasma (SP) induces physiological modifications, including inflammation. An effective HIV-1 vaccine should elicit mucosal immunity, however, modifications of vaccine responses by the local environment remain to be characterized.

View Article and Find Full Text PDF

The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized.

View Article and Find Full Text PDF

Background: During the first trimester of pregnancy, HIV-1 in utero transmission is rare despite the permissivity of the placenta and the decidua (the uterine mucosa during pregnancy) to infection. In the decidua from the first trimester of pregnancy, macrophages (dMs) are the HIV-1 main target cells. Decidual natural killer (dNK) cells account for 70 % of decidual leukocytes.

View Article and Find Full Text PDF

Macrophages from the decidua basalis (dM), the main uterine mucosa during pregnancy, are weakly permissive to HIV-1 infection. Here, we investigated the mechanisms underlying this natural control. We show, by using freshly purified decidual macrophages and ex vivo human decidual explants, that the local decidual environment influences dM differentiation and naturally protects these cells from HIV-1 infection.

View Article and Find Full Text PDF

Unlabelled: In order to develop strategies to prevent HIV-1 (human immunodeficiency virus type 1) transmission, it is crucial to better characterize HIV-1 target cells in the female reproductive tract (FRT) mucosae and to identify effective innate responses. Control of HIV-1 infection in the decidua (the uterine mucosa during pregnancy) can serve as a model to study natural mucosal protection. Macrophages are the main HIV-1 target cells in the decidua.

View Article and Find Full Text PDF

Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis), where maternal and fetal cells are in close contact. Toll-like receptors (TLRs) may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs) and NK cells (dNKs), the major decidual immune cell populations.

View Article and Find Full Text PDF

During the first trimester of human pregnancy, Natural Killer (NK) cells of the maternal uterine mucosa (e.g. decidua) have a unique phenotype and are involved in crucial physiological processes during pregnancy.

View Article and Find Full Text PDF

Background: Maternofetal transmission (MFT) of HIV-1 is relatively rare during the first trimester of pregnancy despite the permissivity of placental cells for cell-to-cell HIV-1 infection. Invasive placental cells interact directly with decidual cells of the uterine mucosa during the first months of pregnancy, but the role of the decidua in the control of HIV-1 transmission is unknown.

Results: We found that decidual mononuclear cells naturally produce low levels of IL-10, IL-12, IL-15, TNF-α, IFN-α, IFN-γ and CXCL-12 (SDF-1), and large amounts of CCL-2 (MCP1), CCL-3 (MIP-1α), CCL-4 (MIP-1β), CCL-5 (Rantes), CXCL-10 (IP-10), IL-6 and IL-8.

View Article and Find Full Text PDF

Background: During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells) but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown.

Methodology/principal Findings: To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro.

View Article and Find Full Text PDF

Nonpathogenic simian immunodeficiency virus SIVagm infection of African green monkeys (AGMs) is characterized by the absence of a robust antibody response against Gag p27. To determine if this is accompanied by a selective loss of T-cell responses to Gag p27, we studied CD4(+) and CD8(+) T-cell responses against Gag p27 and other SIVagm antigens in the peripheral blood and lymph nodes of acutely and chronically infected AGMs. Our data show that AGMs can mount a T-cell response against Gag p27, indicating that the absence of anti-p27 antibodies is not due to the absence of Gag p27-specific T cells.

View Article and Find Full Text PDF

Background And Methods: HIV-1 cell-to-cell transmission is more efficient than infection of permissive cells with cell-free particles. The potency of HIV-1 entry inhibitors to inhibit such transmission is not well known. Herein, we evaluated the efficacy of this new class of antiretrovirals to block cell-to-cell transmission of HIV-1 in a model of reconstitution of the human placental trophoblast barrier in vitro.

View Article and Find Full Text PDF

Interactions between thymic dendritic cells (DC) and thymocytes are critical for proper development of T-cells. We identified human thymic DC populations on the basis of CD123, CD11c and CD14 expression. High levels of CD123 (IL-3R) and CD45RA defined the plasmacytoid DC (pDC) subset.

View Article and Find Full Text PDF

Genotypic population-based methods could be faster and less expensive than phenotypic recombinant assays for determining human immunodeficiency virus type 1 (HIV-1) coreceptor usage in patient samples, but their clinical use requires good genotype-phenotype correlation and concordance with clonal analyses. We have assessed these requirements by clonal analysis of the V1 to V3 env PCR products of 26 patients infected with subtype B HIV-1. We used the resulting set of molecular clones, all sequenced and characterized using a single-cycle recombinant virus phenotypic entry assay, to reevaluate genotype-phenotype correlations.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates why some HIV-infected individuals don’t recover CD4+ T-cells effectively even with successful HAART treatment.
  • Researchers found that those with poor recovery often had a high frequency of CXCR4-using (X4) viruses, which may negatively affect T-cell health.
  • The data suggests that high rates of T-cell loss in these individuals might be due to ongoing cell activation and apoptosis, rather than issues with thymic production of new T-cells.
View Article and Find Full Text PDF

Objectives: Human thymus can be infected by HIV-1 with potential consequences on immune regeneration and homeostasis. We previously showed that CD4 thymocytes preferentially replicate CXCR4 tropic (X4) HIV-1 dependently on interleukin (IL)-7. Here we addressed the susceptibility of thymic dendritic cells (DC) to HIV-1 infection.

View Article and Find Full Text PDF

Despite efficient antiretroviral therapy (ART), CD4+ T cell counts often remain low in HIV-1-infected patients. This has led to IL-7, a crucial cytokine involved in both thymopoiesis and peripheral T cell homeostasis, being suggested as an additional therapeutic strategy. We investigated whether recombinant simian IL-7-treatment enhanced the T cell renewal initiated by ART in rhesus macaques chronically infected with SIVmac251.

View Article and Find Full Text PDF

The main failure of antiretroviral therapy is the lack of restoration of HIV-specific CD4(+) T cells. IL-7, which has been shown to be a crucial cytokine for thymopoiesis, has been envisaged as an additive therapeutic strategy. However, in vitro studies suggest that IL-7 might sustain HIV replication in thymocytes and T lymphocytes.

View Article and Find Full Text PDF

The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4(+) CD8(-) CD3(+) thymocytes.

View Article and Find Full Text PDF

The sequence of events and the mechanisms leading to the destruction of the thymus during human immunodeficiency virus (HIV) infection are still poorly characterized. Investigated here are the survival capacity on HIV-1 infection of the mature single-positive CD4(+)CD8(-)CD3(+) (SP CD4(+)) and the intermediate CD4(+) CD8(-)CD3(-) thymocytes previously shown to be able to replicate the virus in the thymic microenvironment. It is demonstrated that the mature SP CD4(+) thymocytes exhibit a high survival capacity despite the production of a high yield of viruses.

View Article and Find Full Text PDF

This work aims at identifying the thymocyte subpopulation able to support human immunodeficiency virus (HIV) replication under the biological stimuli of the thymic microenvironment. In this report we demonstrate that interaction with thymic epithelial cells (TEC) induces a high-level replication of the T-tropic primary isolate HIV-1(B-LAIp) exclusively in the mature CD4(+) CD8(-) CD3(+) thymocytes. Tumor necrosis factor (TNF) and interleukin-7 (IL-7), secreted during this interaction, are critical cytokines for HIV long terminal repeat transactivation through NF-kappaB-dependent activation.

View Article and Find Full Text PDF