Publications by authors named "NS Sariciftci"

A novel series of Zn--AB porphyrins and benzoporphyrins bearing phenyl and thiophene-based -substituents was successfully synthesized and characterized by spectroscopic and electrochemical techniques. Systematic comparison among the compounds in this series, together with the corresponding A analogs previously studied by our group, led to the understanding of the effects of π-conjugated system extension of a porphyrin core through β-fused rings, replacement of the phenyl with the thiophene-based -groups, and introduction of additional thiophene rings on thienyl substituents on photophysical and electrochemical properties. Oxidative electropolymerization through bithiophenyl units of both A and -AB analogs was achieved, resulting in porphyrin- and benzoporphyrin-oligothiophene conjugated polymers, which were characterized by cyclic voltammetry and absorption spectrophotometry.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a sensitive and fast technique for sensing applications such as chemical trace analysis. However, a successful, high-throughput practical implementation necessitates the availability of simple-to-use and economical SERS substrates. In this work, we present a robust, reproducible, flexible and yet cost-effective SERS substrate suited for the sensitive detection of analytes at near-infrared (NIR) excitation wavelengths.

View Article and Find Full Text PDF

Green hydrogen, by definition, must be produced with renewable energy sources without using fossil fuels. To transform the energy system, we need a fully sustainable production of green and renewable energy as well as the introduction of such "solar fuels" to tackle the chemical storage aspect of renewable energies. Conventional electrolysis of water splitting into oxygen and hydrogen gases is a clean and nonfossil method, but the use of massive noble-metal electrodes makes it expensive.

View Article and Find Full Text PDF

The development of ambient-air-processable organic-inorganic halide perovskite solar cells (OIHPSCs) is a challenge necessary for the transfer of laboratory-scale technology to large-scale and low-cost manufacturing of such devices. Different approaches like additives, antisolvents, composition engineering, and different deposition techniques have been employed to improve the morphology of the perovskite films. Additives that can form Lewis acid-base adducts are known to minimize extrinsic impacts that trigger defects in ambient air.

View Article and Find Full Text PDF

We demonstrate in this work the practical use of uniform mixtures of a bioresin shellac and four natural clays, i.e. montmorillonite, sepiolite, halloysite and vermiculate as dielectrics in organic field effect transistors (OFETs).

View Article and Find Full Text PDF

Four pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap-free nature allows fabrication of virtually hysteresis-free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness.

View Article and Find Full Text PDF

When studying electrochemical oxygen reduction reactions in homogeneous media, special attention must be given to the significant background activity present with conventional electrode materials. The intrinsic electrocatalytic activity of different materials can be investigated using complementary methods, such as the rotating ring-disc electrode (RRDE) technique and chronoamperometric electrolysis with product quantification. This report presents a detailed investigation of the electrocatalytic ability of hydroxy anthraquinone derivatives and riboflavin towards hydrogen peroxide (HO) production a novel RRDE subtraction method together with chronoamperometric electrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • Incorporating large organic cations enhances the stability of perovskite solar cells, but low electron mobility requires careful alignment of organic sheets for optimal charge transport.
  • Additives like methylammonium chloride (MACl) can help achieve this crystal orientation, though the full understanding of their role in nucleation has been lacking.
  • By examining the crystallization process and employing 3-fluorobenzylammonium, researchers found a high degree of preferential orientation and moisture-resistant perovskite films, providing insights for developing better additives for more stable perovskite technologies.
View Article and Find Full Text PDF

Electrochemical capture of carbon dioxide (CO) using organic quinones is a promising and intensively studied alternative to the industrially established scrubbing processes. While recent studies focused only on the influence of substituents having a simple mesomeric or nucleophilicity effect, we have systematically selected six anthraquinone (AQ) derivatives (X-AQ) with amino and hydroxy substituents in order to thoroughly study the influence thereof on the properties of electrochemical CO capture. Experimental data from cyclic voltammetry (CV) and UV-Vis spectroelectrochemistry of solutions in acetonitrile were analyzed and compared with innovative density functional tight binding computational results.

View Article and Find Full Text PDF

Millions of people worldwide are diagnosed with retinal dystrophies such as retinitis pigmentosa and age-related macular degeneration. A retinal prosthesis using organic photovoltaic (OPV) semiconductors is a promising therapeutic device to restore vision to patients at the late onset of the disease. However, an appropriate cytotoxicity approach has to be employed on the OPV materials before using them as retinal implants.

View Article and Find Full Text PDF

Strategies for production and use of nanomaterials have rapidly moved towards safety and sustainability. Beyond these requirements, the novel routes must prove to be able to preserve and even improve the performance of the resulting nanomaterials. Increasing demand of high-performance nanomaterials is mostly related to electronic components, solar energy harvesting devices, pharmaceutical industries, biosensors, and photocatalysis.

View Article and Find Full Text PDF

Anthraquinone (AQ) has long been identified as a highly promising lead structure for various applications in organic electronics. Considering the enormous number of possible substitution patterns of the AQ lead structure, with only a minority being commercially available, a systematic experimental screening of the associated electrochemical potentials represents a highly challenging and time consuming task, which can be greatly enhanced suitable virtual pre-screening techniques. In this work the calculated electrochemical reduction potentials of pristine AQ and 12 hydroxy- or/and amino-substituted AQ derivatives in ,-dimethylformamide have been correlated against newly measured experimental data.

View Article and Find Full Text PDF

We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved.

View Article and Find Full Text PDF

Conjugated donor-acceptor molecules with intramolecular charge transfer absorption are employed for single-component organic solar cells. Among the five types of donor-acceptor molecules, the strong push-pull structure of DTDCPB resulted in solar cells with high , an internal quantum efficiency exceeding 20%, and high exceeding 1 V with little photon energy loss around 0.7 eV.

View Article and Find Full Text PDF

A series of novel soluble nature-inspired flavin derivatives substituted with short butyl and bulky ethyl-adamantyl alkyl groups was prepared via simple and straightforward synthetic approach with moderate to good yields. The comprehensive characterization of the materials, to assess their application potential, has demonstrated that the modification of the conjugated flavin core enables delicate tuning of the absorption and emission properties, optical bandgap, frontier molecular orbital energies, melting points, and thermal stability. Moreover, the thin films prepared thereof exhibit smooth and homogeneous morphology with generally high stability over time.

View Article and Find Full Text PDF

X-ray detectors play a pivotal role in development and advancement of humankind, from far-reaching impact in medicine to furthering the ability to observe distant objects in outer space. While other electronics show the ability to adapt to flexible and lightweight formats, state-of-the-art X-ray detectors rely on materials requiring bulky and fragile configurations, severely limiting their applications. Lead halide perovskites is one of the most rapidly advancing novel materials with success in the field of semiconductor devices.

View Article and Find Full Text PDF

In this report, we present results on the electrocatalytic activity of conducting polymers [polyaniline (PANI) and polypyrrole (PPy)] toward the electrochemical oxygen reduction reaction (ORR) to hydrogen peroxide (HO). The electropolymerization of the polymers and electrolysis conditions were optimized for HO production. On flat glassy carbon (GC) electrodes, the faradaic efficiency (FE) for HO production was significantly improved by the polymers.

View Article and Find Full Text PDF

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials.

View Article and Find Full Text PDF

Nanostructure incorporation into devices plays a key role in improving performance, yet processes for preparing two-dimensional (2D) arrays of colloidal nanoparticles tend not to be universally applicable, particularly for soft and oxygen-sensitive substrates for organic and perovskite-based electronics. Here, we show a method of transferring reverse micelle-deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an organic layer, using a functionalized graphene carrier layer for transfer printing. As the technique can be applied universally to RMD nanoparticles, we used magnetic (γ-FeO) and luminescent (methylammonium lead bromide (MAPbBr)) nanoparticles to validate the transfer-printing methodology.

View Article and Find Full Text PDF

Photon cooling via anti-Stokes photoluminescence (ASPL) is a promising approach to realize all-solid-state cryo-refrigeration by photoexcitation. Photoluminescence quantum yields close to 100% and a strong coupling between phonons and excited states are required to achieve net cooling. We have studied the anti-Stokes photoluminescence of thin films of methylammonium lead bromide nanoparticles.

View Article and Find Full Text PDF

Photoswitchable organic field-effect transistors (OFETs) with embedded photochromic materials are considered as a promising platform for development of organic optical memory devices. Unfortunately, the operational mechanism of these devices and guidelines for selection of light-sensitive materials are still poorly explored. In the present work, a series of photochromic dihetarylethenes with a cyclopentenone bridge moiety were investigated as a dielectric/semiconductor interlayer in the structure of photoswitchable OFETs.

View Article and Find Full Text PDF

Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (HO).

View Article and Find Full Text PDF

The electronics era is flourishing and morphing itself into Internet of Everything, IoE. At the same time, questions arise on the issue of electronic materials employed: especially their natural availability and low-cost fabrication, their functional stability in devices, and finally their desired biodegradation at the end of their life cycle. Hydrogen bonded pigments and natural dyes like indigo, anthraquinone and acridone are not only biodegradable and of bio-origin but also have functionality robustness and offer versatility in designing electronics and sensors components.

View Article and Find Full Text PDF

The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres.

View Article and Find Full Text PDF

The efficiency of organo-lead halide perovskite-based optoelectronic devices is dramatically lower for amorphous materials compared to highly crystalline ones. Therefore, it is challenging to optimize and scale up the production of large-sized single crystals of perovskite materials. Here, we describe a novel and original approach to preparing lead halide perovskite single crystals by applying microwave radiation during the crystallization.

View Article and Find Full Text PDF