Beilstein J Nanotechnol
February 2015
We report on the optical properties of SiGe nanowires (NWs) grown by molecular beam epitaxy (MBE) in ordered arrays on SiO2/Si(111) substrates. The production method employs Au catalysts with self-limited sizes deposited in SiO2-free sites opened-up in the substrate by focused ion beam patterning for the preferential nucleation and growth of these well-organized NWs. The NWs thus produced have a diameter of 200 nm, a length of 200 nm, and a Ge concentration x = 0.
View Article and Find Full Text PDFNanotechnology
August 2014
Selective growth and self-organization of silicon-germanium (SiGe) nanowires (NWs) on focused ion beam (FIB) patterned Si(111) substrates is reported. In its first step, the process involves the selective synthesis of Au catalysts in SiO₂-free areas; its second step involves the preferential nucleation and growth of SiGe NWs on the catalysts. The selective synthesis process is based on a simple, room-temperature reduction of gold salts (Au³⁺Cl₄⁻) in aqueous solution, which provides well-organized Au catalysts.
View Article and Find Full Text PDFFor Ge nanodots approximately 20 nm in diameter grown by annealing a thin amorphous Ge layer deposited by molecular beam epitaxy on a mesoporous TiO2 layer on Si(001), photoluminescence (PL) was observed as a wide near-infrared band near 800 meV. Using a tight binding theoretical model, the energy-dependent PL spectrum was transformed into a dependence on dot size. The average dot size determined the peak energy of the PL band and its shape depended on the size distribution, including bandgap enlargement due to quantum confinement.
View Article and Find Full Text PDFA Fourier-transform radiometer is used to measure blackbody temperatures in the 5001000-K range. The measurements involve collecting mid-infrared spectra at two known reference temperatures and one unknown temperature. The accuracy of the interpolation measurement technique is discussed, and the effects of the uncertainty in the temperature reference points, the voltage ratio measurement, and the wavelength accuracy are described.
View Article and Find Full Text PDFWe describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).
View Article and Find Full Text PDFPhys Rev B Condens Matter
July 1994
Phys Rev B Condens Matter
December 1986