Publications by authors named "NG Antoniou"

We show that, at the critical temperature, there is a class of Lee-Yang zeros of the partition function in a general scalar field theory, which location scales with the size of the system with a characteristic exponent expressed in terms of the isothermal critical exponent δ. In the thermodynamic limit the zeros belonging to this class condense to the critical point ζ=1 on the real axis in the complex fugacity plane while the complementary set of zeros (with Reζ<1) covers the unit circle. Although the aforementioned class degenerates to a single point for an infinite system, when the size is finite it contributes significantly to the partition function and reflects the self-similar structure (fractal geometry, scaling laws) of the critical system.

View Article and Find Full Text PDF

We consider the classical evolution of a lattice of nonlinear coupled oscillators for a special case of initial conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displacements of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking (quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the deformation of the initial fractal geometry as time evolves.

View Article and Find Full Text PDF

We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

View Article and Find Full Text PDF
Fractal geometry of critical systems.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

September 2000

We investigate the geometry of a critical system undergoing a second-order thermal phase transition. Using a local description for the dynamics characterizing the system at the critical point T=T(c), we reveal the formation of clusters with fractal geometry, where the term cluster is used to describe regions with a nonvanishing value of the order parameter. We show that, treating the cluster as an open subsystem of the entire system, new instanton-like configurations dominate the statistical mechanics of the cluster.

View Article and Find Full Text PDF